A Cerebellum-Inspired Spiking Neural Model With Adapting Rate Neurons

计算机科学 小脑 神经生理学 运动学习 人工智能 电动机控制 人工神经网络 眼球链接调节 神经科学 经典条件反射 心理学 数学 条件作用 统计
作者
Yin Liu,Rong Liu,Jiaxing Wang,Wenqian Chen,Yongxuan Wang,Changkai Sun
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1628-1638 被引量:5
标识
DOI:10.1109/tcds.2023.3237776
摘要

The cerebellum plays an important role in smooth and coordinated motor control. Precise control requires the cerebellum to regulate movements in both space and time domains. Although many cerebellar models have been proposed, most of them focus on motor coordination, motor learning, or timing distinctly. Therefore, it is necessary to develop a cerebellar model which contributes to the proper execution of movements via motor learning that displays temporal specificity. In this article, we proposed a novel spiking neural network model to realize cerebellar processing with strong biomimicry, which is based on adapting rate neurons and has a cerebellum-inspired structure as well as biologically plausible cerebellar divergence/convergence ratios. The model was tested with the eyeblink classical conditioning (EBCC) experimental task. The simulation results verify that our implementation has improvements in both signal encoding and learning speed than previous studies. Furthermore, compared with neurophysiological data, our model shows a similar learning trend and can represent the fluctuation of the learning curves. It is demonstrated that our proposed cerebellar model experimentally reproduces the key features of the EBCC task and provides a new way to understand the timing and learning control neural mechanisms of the cerebellum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵Zhao完成签到,获得积分10
刚刚
yy发布了新的文献求助10
刚刚
cdercder应助三个哈卡采纳,获得10
2秒前
华仔应助三个哈卡采纳,获得10
2秒前
慕青应助三个哈卡采纳,获得10
2秒前
慕青应助三个哈卡采纳,获得10
2秒前
爆米花应助三个哈卡采纳,获得10
2秒前
研友_nxwbrL发布了新的文献求助50
3秒前
4秒前
myn1990发布了新的文献求助10
4秒前
烂漫念柏完成签到,获得积分10
5秒前
5秒前
hope发布了新的文献求助10
5秒前
6秒前
kekekele完成签到,获得积分20
7秒前
8秒前
zizi发布了新的文献求助10
8秒前
文艺代灵发布了新的文献求助10
10秒前
科研通AI5应助zhanyuji采纳,获得10
10秒前
张明浪发布了新的文献求助10
11秒前
科研通AI5应助张张小白采纳,获得100
12秒前
12秒前
lq66a6发布了新的文献求助10
12秒前
领导范儿应助Nzoth采纳,获得10
12秒前
LZY完成签到,获得积分10
13秒前
jackycas发布了新的文献求助10
14秒前
耽溺关注了科研通微信公众号
15秒前
战战完成签到,获得积分10
15秒前
16秒前
张明浪完成签到,获得积分10
16秒前
16秒前
科研通AI5应助逝月采纳,获得10
17秒前
19秒前
gzy关注了科研通微信公众号
19秒前
NexusExplorer应助光头强采纳,获得10
19秒前
西梅完成签到,获得积分20
20秒前
黑妹发布了新的文献求助10
22秒前
MchemG应助菠萝蜜采纳,获得10
22秒前
Wency发布了新的文献求助30
22秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397