Tracking persistent postoperative opioid use: a proof-of-concept study demonstrating a use case for natural language processing

医学 围手术期 类阿片 杠杆(统计) 自然史 瑞芬太尼 人工智能 重症监护医学 麻醉 内科学 计算机科学 受体 异丙酚
作者
Eri C. Seng,Soraya Mehdipour,Sierra Simpson,Rodney A. Gabriel
出处
期刊:Regional Anesthesia and Pain Medicine [BMJ]
卷期号:49 (4): 241-247 被引量:14
标识
DOI:10.1136/rapm-2023-104629
摘要

Background Large language models have been gaining tremendous popularity since the introduction of ChatGPT in late 2022. Perioperative pain providers should leverage natural language processing (NLP) technology and explore pertinent use cases to improve patient care. One example is tracking persistent postoperative opioid use after surgery. Since much of the relevant data may be ‘hidden’ within unstructured clinical text, NLP models may prove to be advantageous. The primary objective of this proof-of-concept study was to demonstrate the ability of an NLP engine to review clinical notes and accurately identify patients who had persistent postoperative opioid use after major spine surgery. Methods Clinical documents from all patients that underwent major spine surgery during July 2015–August 2021 were extracted from the electronic health record. The primary outcome was persistent postoperative opioid use, defined as continued use of opioids greater than or equal to 3 months after surgery. This outcome was ascertained via manual clinician review from outpatient spine surgery follow-up notes. An NLP engine was applied to these notes to ascertain the presence of persistent opioid use—this was then compared with results from clinician manual review. Results The final study sample consisted of 965 patients, in which 705 (73.1%) were determined to have persistent opioid use following surgery. The NLP engine correctly determined the patients’ opioid use status in 92.9% of cases, in which it correctly identified persistent opioid use in 95.6% of cases and no persistent opioid use in 86.1% of cases. Discussion Access to unstructured data within the perioperative history can contextualize patients’ opioid use and provide further insight into the opioid crisis, while at the same time improve care directly at the patient level. While these goals are in reach, future work is needed to evaluate how to best implement NLP within different healthcare systems for use in clinical decision support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚姚姚发布了新的文献求助10
1秒前
大模型应助123采纳,获得10
1秒前
2秒前
2秒前
懿懿发布了新的文献求助10
2秒前
2秒前
yyh发布了新的文献求助10
3秒前
shine完成签到,获得积分10
3秒前
Lucas应助糟糕的便当采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
XP完成签到 ,获得积分10
6秒前
泡芙完成签到,获得积分10
6秒前
7秒前
8秒前
shine发布了新的文献求助30
8秒前
文文完成签到 ,获得积分10
9秒前
conanyangqun完成签到,获得积分0
10秒前
李昕123完成签到 ,获得积分10
10秒前
犹豫的诗珊完成签到,获得积分10
10秒前
11秒前
yyh完成签到,获得积分10
11秒前
七七a77应助安详的从波采纳,获得10
12秒前
小苏打完成签到,获得积分10
13秒前
13秒前
14秒前
平淡悲完成签到 ,获得积分10
16秒前
安详的从波应助文件撤销了驳回
17秒前
单纯青槐完成签到,获得积分10
19秒前
19秒前
20秒前
orixero应助端庄的蜡烛采纳,获得10
20秒前
大模型应助123采纳,获得10
21秒前
超级无敌霹雳喷火霸王龙完成签到 ,获得积分10
21秒前
22秒前
大模型应助ffy采纳,获得10
22秒前
23秒前
hyd1640完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
cindy发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5672966
求助须知:如何正确求助?哪些是违规求助? 4930222
关于积分的说明 15142739
捐赠科研通 4832231
什么是DOI,文献DOI怎么找? 2587989
邀请新用户注册赠送积分活动 1541778
关于科研通互助平台的介绍 1499936