Effectiveness of digital screening tools in detecting cognitive impairment among community-dwelling elderly in Northern China: A large cohort study

认知障碍 队列 中国 老年学 医学 认知 心理学 地理 精神科 内科学 考古
作者
Xiaonan Zhang,Feifei Zhang,Sijia Hou,Chenxi Hao,Xiangmin Fan,Yarong Zhao,Wenjing Bao,Junpin An,Shuning Du,Guowen Min,Qiuyan Wang,Wencheng Zhu,Yang Li,Hui Zhang
出处
期刊:JPAD [Springer Science+Business Media]
卷期号:: 100080-100080
标识
DOI:10.1016/j.tjpad.2025.100080
摘要

This study assessed the effectiveness of three digital screening tools in detecting cognitive impairment (CI) in a large cohort of community-dwelling elderly individuals and investigated the relationship between key digital features and plasma p-tau217 levels. This community-based cohort study included 1,083 participants aged 65 years or older, with 337 diagnosed with CI and 746 classified as normal controls (NC). We utilized two screening approaches: traditional methods (AD8, MMSE scale, and APOE genotyping) and digital tools (drawing, gait, and eye tracking). LightGBM-based machine learning models were developed for each digital screening tool and their combination, and their performance was evaluated. The correlation between key digital features and plasma p-tau217 levels was analyzed as well. A total of 21 drawing, 71 gait, and 35 eye-tracking parameters showed significant differences between the two groups (all p < 0.05). The area under the curve (AUC) values for the drawing, gait, and eye-tracking models in distinguishing CI from NC were 0.860, 0.848, and 0.895, respectively. The combination of eye-tracking and drawing achieved the highest classification effectiveness, with an AUC of 0.958, and accuracy, sensitivity, and specificity all exceeded 85%. The fusion model achieved an AUC of 0.928 in distinguishing mild cognitive impairment (MCI) from NC. Additionally, several digital features (including two drawing, ten gait, and one eye-tracking parameters) were significantly correlated with plasma p-tau217 levels (all |r| > 0.3, p < 0.001). Digital screening tools offer objective, accurate, and efficient alternatives for detecting CI in community settings, with the fusion of drawing and eye-tracking providing the best performance (AUC = 0.958).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
麦格布丁发布了新的文献求助10
1秒前
hbpu230701完成签到,获得积分0
2秒前
3秒前
Dr发布了新的文献求助10
5秒前
高兴的海亦完成签到,获得积分10
5秒前
5秒前
HY发布了新的文献求助10
6秒前
Erueka完成签到,获得积分10
6秒前
lijf2024完成签到,获得积分10
8秒前
8秒前
老金金完成签到 ,获得积分10
8秒前
9秒前
11秒前
陈杨发布了新的文献求助10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得30
13秒前
今后应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
plasmid完成签到,获得积分10
14秒前
Dr完成签到,获得积分10
15秒前
howay发布了新的文献求助10
15秒前
Xiaoxiao应助惜曦采纳,获得10
16秒前
落叶捎来讯息完成签到 ,获得积分10
17秒前
顾矜应助amupf采纳,获得10
18秒前
18秒前
DYY发布了新的文献求助10
20秒前
April完成签到,获得积分10
20秒前
21秒前
炙热的羽毛完成签到,获得积分10
24秒前
24秒前
AQ发布了新的文献求助10
26秒前
qianyu完成签到,获得积分10
26秒前
零季完成签到,获得积分20
27秒前
DINGXH完成签到,获得积分10
28秒前
华仔应助科研小王采纳,获得10
28秒前
林志伟完成签到 ,获得积分10
30秒前
Aikesi完成签到,获得积分10
32秒前
情怀应助AQ采纳,获得10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781029
求助须知:如何正确求助?哪些是违规求助? 3326508
关于积分的说明 10227468
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669541
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734