Quality identification of Amomi fructus using E-nose, HS-GC-IMS, and intelligent data fusion methods

色谱法 化学 融合 语言学 哲学
作者
Panpan Zhang,Xinjing Gui,Xuehua Fan,Han-Li,Haiyang Li,Xiaopeng Li,Fengyu Dong,Yanli Wang,Jing-Yao,Jun-Han Shi,Ruixin Liu
出处
期刊:Frontiers in Chemistry [Frontiers Media SA]
卷期号:13 被引量:1
标识
DOI:10.3389/fchem.2025.1544743
摘要

Amomi fructus (AF) has been used for both medicinal and food purposes for centuries. However, issues such as source mixing, substandard quality, and product adulteration often affect its efficacy. This study used E-nose (EN) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) to determine and analyze the volatile organic compounds (VOCs) in AF and its counterfeit products. A total of 111 VOCs were detected by HS-GC-IMS, with 101 tentatively identified. Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) identified 47 VOCs as differential markers for distinguishing authentic AF from counterfeits (VIP value >1 and P < 0.05). Based on the E-nose sensor response value and the peak volumes of the 111 VOCs, the unguided Principal Component Analysis (PCA), guided Principal Component Analysis-Discriminant Analysis (PCA-DA), and Partial Least Squares-Discriminant Analysis (PLS-DA) models were established to differentiate AF by authenticity, origin, and provenance. The authenticity identification model achieved 100.00% accuracy after PCA analysis, while the origin identification model and the provenance identification model were 95.65% (HS-GC-IMS: PLS-DA) and 98.18% (HS-GC-IMS: PCA-DA/PLS-DA), respectively. Further data-level fusion of E-nose and HS-GC-IMS significantly improved the accuracy of the origin identification model to 97.96% (PLS-DA), outperforming single-source data modeling. In conclusion, the intelligent data fusion algorithm based on E-nose and HS-GC-IMS data effectively identifies the authenticity, origin, and provenance of AF, providing a rapid and accurate method for quality evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
哲寒完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
慕青应助大力思雁采纳,获得10
1秒前
2秒前
2秒前
2秒前
某人完成签到,获得积分10
2秒前
guojingjing发布了新的文献求助10
2秒前
科研通AI2S应助楚眠采纳,获得10
2秒前
所所应助WH采纳,获得10
2秒前
小姚完成签到,获得积分10
2秒前
ygwu0946完成签到,获得积分10
3秒前
Owen应助Summer采纳,获得10
3秒前
zzk发布了新的文献求助10
3秒前
3秒前
junru发布了新的文献求助30
4秒前
双shuang完成签到,获得积分10
4秒前
4秒前
充电宝应助典雅的迎波采纳,获得10
4秒前
蓝色斑马发布了新的文献求助10
4秒前
4秒前
Hans发布了新的文献求助10
5秒前
pdx666完成签到,获得积分10
5秒前
kxy0311发布了新的文献求助10
5秒前
自信南霜完成签到,获得积分10
5秒前
JamesPei应助tangbaotian采纳,获得10
6秒前
吴壮发布了新的文献求助10
6秒前
于鑫发布了新的文献求助10
6秒前
shanshanerchuan完成签到,获得积分10
6秒前
sunyanghu369发布了新的文献求助10
6秒前
6秒前
6秒前
手拿把掐吴完成签到 ,获得积分10
7秒前
张宇发布了新的文献求助20
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512039
求助须知:如何正确求助?哪些是违规求助? 4606513
关于积分的说明 14499938
捐赠科研通 4541921
什么是DOI,文献DOI怎么找? 2488717
邀请新用户注册赠送积分活动 1470803
关于科研通互助平台的介绍 1443043