亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Acute myocardial infarction prognosis prediction with reliable and interpretable artificial intelligence system

可解释性 反事实思维 心肌梗塞 人工智能 机器学习 计算机科学 可靠性(半导体) 医学 内科学 哲学 功率(物理) 物理 认识论 量子力学
作者
Min-Wook Kim,Donggil Kang,Min Sun Kim,Jeong Cheon Choe,Sun Hack Lee,Jin Hee Ahn,Jun‐Hyok Oh,Jung Hyun Choi,Han Cheol Lee,Kwang Soo,Kyungtae Jang,WooR I Bong,Giltae Song,Hyewon Lee
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:31 (7): 1540-1550 被引量:2
标识
DOI:10.1093/jamia/ocae114
摘要

Abstract Objective Predicting mortality after acute myocardial infarction (AMI) is crucial for timely prescription and treatment of AMI patients, but there are no appropriate AI systems for clinicians. Our primary goal is to develop a reliable and interpretable AI system and provide some valuable insights regarding short, and long-term mortality. Materials and methods We propose the RIAS framework, an end-to-end framework that is designed with reliability and interpretability at its core and automatically optimizes the given model. Using RIAS, clinicians get accurate and reliable predictions which can be used as likelihood, with global and local explanations, and “what if” scenarios to achieve desired outcomes as well. Results We apply RIAS to AMI prognosis prediction data which comes from the Korean Acute Myocardial Infarction Registry. We compared FT-Transformer with XGBoost and MLP and found that FT-Transformer has superiority in sensitivity and comparable performance in AUROC and F1 score to XGBoost. Furthermore, RIAS reveals the significance of statin-based medications, beta-blockers, and age on mortality regardless of time period. Lastly, we showcase reliable and interpretable results of RIAS with local explanations and counterfactual examples for several realistic scenarios. Discussion RIAS addresses the “black-box” issue in AI by providing both global and local explanations based on SHAP values and reliable predictions, interpretable as actual likelihoods. The system’s “what if” counterfactual explanations enable clinicians to simulate patient-specific scenarios under various conditions, enhancing its practical utility. Conclusion The proposed framework provides reliable and interpretable predictions along with counterfactual examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄成熟时完成签到 ,获得积分10
2秒前
22秒前
31秒前
天真千易发布了新的文献求助10
39秒前
桥西小河完成签到 ,获得积分10
1分钟前
1分钟前
打打应助yo采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
yo发布了新的文献求助10
1分钟前
yo完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
Hh发布了新的文献求助10
2分钟前
3分钟前
3分钟前
Hh完成签到,获得积分10
3分钟前
3分钟前
3分钟前
cchh关注了科研通微信公众号
3分钟前
酷酷问夏完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
金金发布了新的文献求助10
3分钟前
学术混子完成签到,获得积分10
3分钟前
corleeang完成签到 ,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
和平使命应助lvzhou采纳,获得20
4分钟前
852应助cchh采纳,获得15
4分钟前
5分钟前
17发布了新的文献求助10
5分钟前
5分钟前
CodeCraft应助17采纳,获得10
5分钟前
9527发布了新的文献求助10
5分钟前
科目三应助lezbj99采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432400
求助须知:如何正确求助?哪些是违规求助? 4544989
关于积分的说明 14195045
捐赠科研通 4464383
什么是DOI,文献DOI怎么找? 2447075
邀请新用户注册赠送积分活动 1438405
关于科研通互助平台的介绍 1415253