Attention Weighted Local Descriptors

计算机科学 人工智能 地点 棱锥(几何) 背景(考古学) 匹配(统计) 卷积神经网络 特征(语言学) 空间语境意识 模式识别(心理学) 计算机视觉 机器学习 数学 古生物学 生物 几何学 哲学 语言学 统计
作者
Changwei Wang,Rongtao Xu,Ke Lü,Shibiao Xu,Weiliang Meng,Yuyang Zhang,Bin Fan,Xiaopeng Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (9): 10632-10649 被引量:12
标识
DOI:10.1109/tpami.2023.3266728
摘要

Local features detection and description are widely used in many vision applications with high industrial and commercial demands. With large-scale applications, these tasks raise high expectations for both the accuracy and speed of local features. Most existing studies on local features learning focus on the local descriptions of individual keypoints, which neglect their relationships established from global spatial awareness. In this paper, we present AWDesc with a consistent attention mechanism (CoAM) that opens up the possibility for local descriptors to embrace image-level spatial awareness in both the training and matching stages. For local features detection, we adopt local features detection with feature pyramid to obtain more stable and accurate keypoints localization. For local features description, we provide two versions of AWDesc to cope with different accuracy and speed requirements. On the one hand, we introduce Context Augmentation to address the inherent locality of convolutional neural networks by injecting non-local context information, so that local descriptors can "look wider to describe better". Specifically, well-designed Adaptive Global Context Augmented Module (AGCA) and Diverse Surrounding Context Augmented Module (DSCA) are proposed to construct robust local descriptors with context information from global to surrounding. On the other hand, we design an extremely lightweight backbone network coupled with the proposed special knowledge distillation strategy to achieve the best trade-off in accuracy and speed. What is more, we perform thorough experiments on image matching, homography estimation, visual localization, and 3D reconstruction tasks, and the results demonstrate that our method surpasses the current state-of-the-art local descriptors. Code is available at: https://github.com/vignywang/AWDesc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
越幸运完成签到 ,获得积分10
刚刚
小蘑菇发布了新的文献求助30
1秒前
邓可新完成签到,获得积分10
1秒前
1秒前
羊羊完成签到 ,获得积分10
1秒前
Joy发布了新的文献求助10
1秒前
akanenn999完成签到,获得积分10
1秒前
Meyako完成签到 ,获得积分10
1秒前
Nick应助lilippx采纳,获得30
2秒前
渴望成功的学术残废完成签到,获得积分10
2秒前
乌龟gogogo完成签到 ,获得积分10
2秒前
Hello应助XXXXH采纳,获得10
2秒前
茶卡盐湖完成签到,获得积分10
4秒前
PPSlu完成签到,获得积分10
4秒前
syfun发布了新的文献求助10
4秒前
周涛完成签到,获得积分10
4秒前
WLWLW完成签到,获得积分0
5秒前
老冯完成签到 ,获得积分10
5秒前
冰糖秋梨膏完成签到 ,获得积分10
5秒前
jia完成签到,获得积分10
5秒前
苹果完成签到,获得积分10
6秒前
柴犬完成签到 ,获得积分10
6秒前
waiho完成签到,获得积分10
6秒前
7秒前
xu发布了新的文献求助10
7秒前
7秒前
qiaoshan_Jason完成签到,获得积分10
8秒前
李健应助小蘑菇采纳,获得10
8秒前
thuuu完成签到,获得积分10
8秒前
隐形曼青应助爱啃大虾采纳,获得10
8秒前
simpleplanfx完成签到,获得积分10
8秒前
羊踯躅完成签到,获得积分10
8秒前
DYLAN_ZZ完成签到,获得积分10
9秒前
55完成签到,获得积分10
9秒前
光亮萤完成签到,获得积分10
10秒前
轻松尔蝶完成签到 ,获得积分10
10秒前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
10秒前
光亮若翠完成签到,获得积分10
11秒前
LSW完成签到,获得积分20
11秒前
XL神放完成签到 ,获得积分10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788474
求助须知:如何正确求助?哪些是违规求助? 3333791
关于积分的说明 10263810
捐赠科研通 3049776
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802148
科研通“疑难数据库(出版商)”最低求助积分说明 760526