A hybrid deep learning approach for gland segmentation in prostate histopathological images

计算机科学 分割 人工智能 前列腺癌 数字化病理学 前列腺 深度学习 模式识别(心理学) 图像分割 前列腺 计算机视觉 医学 癌症 内科学
作者
Massimo Salvi,Martino Bosco,Luca Molinaro,Alessandro Gambella,Mauro Papotti,U. Rajendra Acharya,Filippo Molinari
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:115: 102076-102076 被引量:51
标识
DOI:10.1016/j.artmed.2021.102076
摘要

Abstract Background In digital pathology, the morphology and architecture of prostate glands have been routinely adopted by pathologists to evaluate the presence of cancer tissue. The manual annotations are operator-dependent, error-prone and time-consuming. The automated segmentation of prostate glands can be very challenging too due to large appearance variation and serious degeneration of these histological structures. Method A new image segmentation method, called RINGS (Rapid IdentificatioN of Glandural Structures), is presented to segment prostate glands in histopathological images. We designed a novel glands segmentation strategy using a multi-channel algorithm that exploits and fuses both traditional and deep learning techniques. Specifically, the proposed approach employs a hybrid segmentation strategy based on stroma detection to accurately detect and delineate the prostate glands contours. Results Automated results are compared with manual annotations and seven state-of-the-art techniques designed for glands segmentation. Being based on stroma segmentation, no performance degradation is observed when segmenting healthy or pathological structures. Our method is able to delineate the prostate gland of the unknown histopathological image with a dice score of 90.16 % and outperforms all the compared state-of-the-art methods. Conclusions To the best of our knowledge, the RINGS algorithm is the first fully automated method capable of maintaining a high sensitivity even in the presence of severe glandular degeneration. The proposed method will help to detect the prostate glands accurately and assist the pathologists to make accurate diagnosis and treatment. The developed model can be used to support prostate cancer diagnosis in polyclinics and community care centres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助奇奇怪怪采纳,获得10
刚刚
茜茜完成签到 ,获得积分10
2秒前
阿南完成签到 ,获得积分10
3秒前
4秒前
星弟完成签到 ,获得积分10
4秒前
猫男爵发布了新的文献求助10
5秒前
简单秋烟发布了新的文献求助10
8秒前
John发布了新的文献求助10
9秒前
efren1806完成签到,获得积分10
11秒前
机智的紫丝完成签到,获得积分10
12秒前
12秒前
lxh完成签到,获得积分10
12秒前
xixi完成签到 ,获得积分10
12秒前
多多完成签到,获得积分10
14秒前
shaohua2011完成签到,获得积分10
15秒前
必吃榜第一应助lmg采纳,获得10
15秒前
16秒前
Herisland完成签到 ,获得积分10
18秒前
20秒前
缓慢千易完成签到,获得积分10
20秒前
21秒前
刘一三完成签到 ,获得积分10
22秒前
随便发布了新的文献求助10
22秒前
小章同学完成签到,获得积分10
23秒前
24秒前
sfsfes发布了新的文献求助10
25秒前
MOF完成签到 ,获得积分10
25秒前
25秒前
健壮雨兰完成签到,获得积分10
29秒前
充电宝应助ziliz采纳,获得10
29秒前
Lighters完成签到 ,获得积分10
29秒前
loulan完成签到,获得积分10
30秒前
HEIKU应助1112222采纳,获得10
31秒前
One_day发布了新的文献求助200
31秒前
葡萄炖雪梨完成签到,获得积分10
33秒前
1233330完成签到,获得积分10
34秒前
桐桐应助rrrrr采纳,获得10
37秒前
随便完成签到,获得积分10
38秒前
健壮的涑完成签到 ,获得积分10
39秒前
情怀应助AHA采纳,获得20
40秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825591
求助须知:如何正确求助?哪些是违规求助? 3367764
关于积分的说明 10447731
捐赠科研通 3087164
什么是DOI,文献DOI怎么找? 1698468
邀请新用户注册赠送积分活动 816805
科研通“疑难数据库(出版商)”最低求助积分说明 769973