SleepPrintNet: A Multivariate Multimodal Neural Network Based on Physiological Time-Series for Automatic Sleep Staging

判别式 计算机科学 脑电图 人工智能 特征提取 模式识别(心理学) 模式 特征(语言学) 睡眠阶段 语音识别 水准点(测量) 机器学习 多导睡眠图 心理学 社会学 地理 哲学 精神科 语言学 社会科学 大地测量学
作者
Ziyu Jia,Xiyang Cai,Gaoxing Zheng,Jing Wang,Youfang Lin
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:1 (3): 248-257 被引量:61
标识
DOI:10.1109/tai.2021.3060350
摘要

Sleep is one of the most fundamental physiological activities of human beings. Sleep assessment based on physiological time-series can efficiently assist human experts to diagnose the sleep health of people. However, most of the existing methods only considered one or two kinds of time-domain, frequency-domain, and spatial-domain information from electroencephalogram (EEG). Besides, existing deep learning methods share the feature extraction module of EEG with other modalities, which ignore the discriminative features of electrooculogram (EOG) and electromyography (EMG). Therefore, how to make full use of the complementarity of different features of EEG and capture the discriminative features from other modalities is challenging. To tackle this challenge, we design SleepPrintNet to capture the SleepPrint in physiological time-series, which represents the complementarity among different features of EEG and discriminative features from other modalities in different sleep stages. SleepPrintNet consists of an EEG temporal feature extraction module, an EEG spectral-spatial feature extraction module for the temporal-spectral-spatial representation of EEG signals, and two multimodal feature extraction modules including EOG and EMG feature extraction module. To the best of our knowledge, it is the first attempt to integrate EEG temporal-spectral-spatial as well as the multimodal features simultaneously in a unified model for sleep staging. Experiments on the benchmark dataset MASS-SS3 demonstrate that SleepPrintNet outperforms all baseline models. The implementation code of SleepPrintNet is available at https://github.com/xiyangcai/SleepPrintNet .

Impact Statement– Sleep staging helps sleep experts assess sleep quality and diagnose sleep health. The polysomnography, which contains the physiological signal recordings during sleep, is a kind of multimodal multivariant physiological time-series for sleep staging. However, existing methods treat physiological time-series from different parts of the body equally, which ignore the abundant information in multimodal signals. The SleepPrintNet proposed in this article has improved the accuracy of sleep staging with the help of the discriminative characteristics from different physiological time-series, which is made up of several independent modules for the extraction of different modalities signals. SleepPrintNet is also a universal framework for the classification of multivariate and multimodal signals. It can be applied in the diagnosis and treatment of other diseases based on physiological signals. The high-accuracy classification of physiological signals has great significance in the field of intelligent medical diagnostics.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚好发布了新的文献求助10
1秒前
炙热的语芹完成签到,获得积分20
1秒前
1秒前
qinandi124发布了新的文献求助10
2秒前
陈百川应助瀼瀼采纳,获得20
3秒前
哈哈Ye发布了新的文献求助10
4秒前
十三州府完成签到,获得积分10
4秒前
4秒前
刘一安完成签到 ,获得积分10
7秒前
9秒前
bluefiber发布了新的文献求助10
10秒前
十九发布了新的文献求助10
10秒前
11秒前
13秒前
酷炫觅双完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
科研通AI5应助刚刚好采纳,获得10
14秒前
14秒前
情怀应助难过的谷芹采纳,获得30
15秒前
15秒前
2000dw发布了新的文献求助10
17秒前
20秒前
21秒前
荀煜祺完成签到,获得积分10
24秒前
怕孤独的乌龟完成签到,获得积分10
25秒前
lilili应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得150
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得10
25秒前
26秒前
默默白开水完成签到 ,获得积分10
27秒前
胖大海完成签到,获得积分10
27秒前
27秒前
Felix完成签到 ,获得积分10
28秒前
yxsxm发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069566
求助须知:如何正确求助?哪些是违规求助? 4290887
关于积分的说明 13368927
捐赠科研通 4111055
什么是DOI,文献DOI怎么找? 2251251
邀请新用户注册赠送积分活动 1256459
关于科研通互助平台的介绍 1188939