亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SleepPrintNet: A Multivariate Multimodal Neural Network Based on Physiological Time-Series for Automatic Sleep Staging

判别式 计算机科学 脑电图 人工智能 特征提取 模式识别(心理学) 模式 特征(语言学) 睡眠阶段 语音识别 水准点(测量) 机器学习 多导睡眠图 心理学 社会学 地理 哲学 精神科 语言学 社会科学 大地测量学
作者
Ziyu Jia,Xiyang Cai,Gaoxing Zheng,Jing Wang,Youfang Lin
出处
期刊:IEEE transactions on artificial intelligence [Institute of Electrical and Electronics Engineers]
卷期号:1 (3): 248-257 被引量:55
标识
DOI:10.1109/tai.2021.3060350
摘要

Sleep is one of the most fundamental physiological activities of human beings. Sleep assessment based on physiological time-series can efficiently assist human experts to diagnose the sleep health of people. However, most of the existing methods only considered one or two kinds of time-domain, frequency-domain, and spatial-domain information from electroencephalogram (EEG). Besides, existing deep learning methods share the feature extraction module of EEG with other modalities, which ignore the discriminative features of electrooculogram (EOG) and electromyography (EMG). Therefore, how to make full use of the complementarity of different features of EEG and capture the discriminative features from other modalities is challenging. To tackle this challenge, we design SleepPrintNet to capture the SleepPrint in physiological time-series, which represents the complementarity among different features of EEG and discriminative features from other modalities in different sleep stages. SleepPrintNet consists of an EEG temporal feature extraction module, an EEG spectral-spatial feature extraction module for the temporal-spectral-spatial representation of EEG signals, and two multimodal feature extraction modules including EOG and EMG feature extraction module. To the best of our knowledge, it is the first attempt to integrate EEG temporal-spectral-spatial as well as the multimodal features simultaneously in a unified model for sleep staging. Experiments on the benchmark dataset MASS-SS3 demonstrate that SleepPrintNet outperforms all baseline models. The implementation code of SleepPrintNet is available at https://github.com/xiyangcai/SleepPrintNet .

Impact Statement– Sleep staging helps sleep experts assess sleep quality and diagnose sleep health. The polysomnography, which contains the physiological signal recordings during sleep, is a kind of multimodal multivariant physiological time-series for sleep staging. However, existing methods treat physiological time-series from different parts of the body equally, which ignore the abundant information in multimodal signals. The SleepPrintNet proposed in this article has improved the accuracy of sleep staging with the help of the discriminative characteristics from different physiological time-series, which is made up of several independent modules for the extraction of different modalities signals. SleepPrintNet is also a universal framework for the classification of multivariate and multimodal signals. It can be applied in the diagnosis and treatment of other diseases based on physiological signals. The high-accuracy classification of physiological signals has great significance in the field of intelligent medical diagnostics.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
billkin完成签到,获得积分10
5秒前
12秒前
CipherSage应助酷炫半蕾采纳,获得10
17秒前
13508104971完成签到,获得积分20
18秒前
努力的淼淼完成签到 ,获得积分10
19秒前
25秒前
学术通zzz发布了新的文献求助10
30秒前
三泥完成签到,获得积分10
31秒前
31秒前
青梨发布了新的文献求助10
37秒前
37秒前
39秒前
Xx发布了新的文献求助10
44秒前
幸运星完成签到,获得积分10
45秒前
47秒前
九龍发布了新的文献求助10
52秒前
Yyyyyyyyy发布了新的文献求助10
53秒前
九龍完成签到 ,获得积分10
57秒前
57秒前
张麻子发布了新的文献求助50
59秒前
科研通AI5应助Yyyyyyyyy采纳,获得10
1分钟前
1分钟前
492357816完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
动漫大师发布了新的文献求助30
1分钟前
Kevin完成签到,获得积分10
1分钟前
CodeCraft应助九龍采纳,获得10
1分钟前
1分钟前
九龍发布了新的文献求助10
1分钟前
孙兴燕完成签到,获得积分10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
zho应助科研通管家采纳,获得10
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
现代的绣连完成签到,获得积分10
1分钟前
1分钟前
菜菜完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815701
求助须知:如何正确求助?哪些是违规求助? 3359290
关于积分的说明 10402074
捐赠科研通 3077138
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767703