UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-Wise Perspective with Transformer

分割 编码器 计算机科学 变压器 频道(广播) 人工智能 模棱两可 模式识别(心理学) 计算机网络 程序设计语言 工程类 操作系统 电气工程 电压
作者
Haonan Wang,Peng Cao,Jiaqi Wang,Osmar R. Zai͏̈ane
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:36 (3): 2441-2449 被引量:472
标识
DOI:10.1609/aaai.v36i3.20144
摘要

Most recent semantic segmentation methods adopt a U-Net framework with an encoder-decoder architecture. It is still challenging for U-Net with a simple skip connection scheme to model the global multi-scale context: 1) Not each skip connection setting is effective due to the issue of incompatible feature sets of encoder and decoder stage, even some skip connection negatively influence the segmentation performance; 2) The original U-Net is worse than the one without any skip connection on some datasets. Based on our findings, we propose a new segmentation framework, named UCTransNet (with a proposed CTrans module in U-Net), from the channel perspective with attention mechanism. Specifically, the CTrans (Channel Transformer) module is an alternate of the U-Net skip connections, which consists of a sub-module to conduct the multi-scale Channel Cross fusion with Transformer (named CCT) and a sub-module Channel-wise Cross-Attention (named CCA) to guide the fused multi-scale channel-wise information to effectively connect to the decoder features for eliminating the ambiguity. Hence, the proposed connection consisting of the CCT and CCA is able to replace the original skip connection to solve the semantic gaps for an accurate automatic medical image segmentation. The experimental results suggest that our UCTransNet produces more precise segmentation performance and achieves consistent improvements over the state-of-the-art for semantic segmentation across different datasets and conventional architectures involving transformer or U-shaped framework. Code: https://github.com/McGregorWwww/UCTransNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
smile完成签到,获得积分10
3秒前
lanlan完成签到 ,获得积分10
5秒前
wa完成签到,获得积分20
5秒前
毛毛虫完成签到,获得积分10
5秒前
蒸蒸日上发布了新的文献求助10
8秒前
yyy完成签到,获得积分10
8秒前
Zephyr完成签到,获得积分10
10秒前
YY-Bubble完成签到,获得积分10
12秒前
Docsiwen完成签到 ,获得积分10
12秒前
13秒前
15秒前
f1ame完成签到,获得积分10
16秒前
健壮丝袜完成签到,获得积分10
16秒前
yusuf发布了新的文献求助10
16秒前
可爱的函函应助无辜秋珊采纳,获得10
17秒前
健壮丝袜发布了新的文献求助10
18秒前
aokaoji发布了新的文献求助10
20秒前
20秒前
kgmilan完成签到,获得积分20
21秒前
我是老大应助IKUN采纳,获得10
23秒前
合适靖儿完成签到 ,获得积分10
25秒前
孤独的盼曼完成签到 ,获得积分10
28秒前
29秒前
danna应助Annie采纳,获得10
29秒前
dingz完成签到,获得积分10
29秒前
李爱国应助zhaowenxian采纳,获得10
30秒前
ls完成签到,获得积分10
31秒前
lf发布了新的文献求助10
31秒前
persi完成签到 ,获得积分10
33秒前
IKUN发布了新的文献求助10
34秒前
aokaoji完成签到,获得积分20
34秒前
38秒前
爆米花应助笔尖划痕采纳,获得10
40秒前
yusuf发布了新的文献求助10
44秒前
44秒前
44秒前
充电宝应助AixGnad采纳,获得10
45秒前
lf完成签到,获得积分10
46秒前
Lucas应助刘静采纳,获得10
47秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843823
求助须知:如何正确求助?哪些是违规求助? 3386203
关于积分的说明 10544094
捐赠科研通 3106943
什么是DOI,文献DOI怎么找? 1711344
邀请新用户注册赠送积分活动 824042
科研通“疑难数据库(出版商)”最低求助积分说明 774409