Assessing heterogeneity in spatial data using the HTA index with applications to spatial transcriptomics and imaging

空间分析 空间异质性 肿瘤异质性 计算机科学 推论 计算生物学 源代码 数据挖掘 生物 人工智能 医学 统计 癌症 内科学 数学 操作系统 生态学
作者
Alona Levy-Jurgenson,Xavier Tekpli,Zohar Yakhini
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (21): 3796-3804 被引量:2
标识
DOI:10.1093/bioinformatics/btab569
摘要

Tumour heterogeneity is being increasingly recognized as an important characteristic of cancer and as a determinant of prognosis and treatment outcome. Emerging spatial transcriptomics data hold the potential to further our understanding of tumour heterogeneity and its implications. However, existing statistical tools are not sufficiently powerful to capture heterogeneity in the complex setting of spatial molecular biology.We provide a statistical solution, the HeTerogeneity Average index (HTA), specifically designed to handle the multivariate nature of spatial transcriptomics. We prove that HTA has an approximately normal distribution, therefore lending itself to efficient statistical assessment and inference. We first demonstrate that HTA accurately reflects the level of heterogeneity in simulated data. We then use HTA to analyze heterogeneity in two cancer spatial transcriptomics datasets: spatial RNA sequencing by 10x Genomics and spatial transcriptomics inferred from H&E. Finally, we demonstrate that HTA also applies to 3D spatial data using brain MRI. In spatial RNA sequencing, we use a known combination of molecular traits to assert that HTA aligns with the expected outcome for this combination. We also show that HTA captures immune-cell infiltration at multiple resolutions. In digital pathology, we show how HTA can be used in survival analysis and demonstrate that high levels of heterogeneity may be linked to poor survival. In brain MRI, we show that HTA differentiates between normal ageing, Alzheimer's disease and two tumours. HTA also extends beyond molecular biology and medical imaging, and can be applied to many domains, including GIS.Python package and source code are available at: https://github.com/alonalj/hta.Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Qin应助威威12采纳,获得20
刚刚
夜紫依寒完成签到,获得积分10
1秒前
wanci应助李现真滴帅采纳,获得10
1秒前
1秒前
赘婿应助大大怪将军采纳,获得10
1秒前
wanci应助秋向秋采纳,获得10
1秒前
twh78完成签到,获得积分10
1秒前
大方的梦安完成签到,获得积分10
1秒前
一修完成签到,获得积分10
3秒前
Akim应助殷少华采纳,获得10
3秒前
喷香大蒜瓣完成签到,获得积分10
4秒前
上官若男应助铌钛钒采纳,获得10
4秒前
yue957发布了新的文献求助10
4秒前
heheha完成签到,获得积分10
4秒前
4秒前
orixero应助专心搞学术采纳,获得10
5秒前
5秒前
常常在努力完成签到,获得积分10
5秒前
科研小白发布了新的文献求助10
6秒前
852应助感动冷玉采纳,获得10
6秒前
kkx发布了新的文献求助10
7秒前
7秒前
7秒前
ElsaFan完成签到,获得积分10
8秒前
万能图书馆应助胡胡采纳,获得10
8秒前
敏感的沛容完成签到,获得积分10
9秒前
9秒前
9秒前
洛尘完成签到,获得积分10
9秒前
风信子发布了新的文献求助10
9秒前
稚鱼应助暗夜男采纳,获得10
10秒前
科研通AI2S应助VDC采纳,获得10
11秒前
小妖931105发布了新的文献求助10
11秒前
春深半夏完成签到,获得积分10
12秒前
provin发布了新的文献求助10
12秒前
焱焱完成签到,获得积分10
12秒前
科研通AI5应助吴陈采纳,获得10
12秒前
研友_VZG7GZ应助Prowler采纳,获得10
12秒前
13秒前
搜集达人应助沉默的尔槐采纳,获得10
13秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789000
求助须知:如何正确求助?哪些是违规求助? 3334088
关于积分的说明 10267170
捐赠科研通 3050312
什么是DOI,文献DOI怎么找? 1673974
邀请新用户注册赠送积分活动 802379
科研通“疑难数据库(出版商)”最低求助积分说明 760570