因科镍合金
锁孔
材料科学
激光功率缩放
因科镍合金625
有限元法
过程(计算)
激光器
机械工程
复合材料
计算机科学
合金
结构工程
光学
焊接
工程类
物理
操作系统
作者
Hung‐Yu Wang,Yu‐Lung Lo,Hong-Chuong Tran,M. Mohsin Raza,Trong-Nhan Le
标识
DOI:10.1108/rpj-11-2020-0282
摘要
Purpose For high crack-susceptibility materials such as Inconel 713LC (IN713LC) nickel alloy, fabricating crack-free components using the laser powder bed fusion (LPBF) technique represents a significant challenge because of the complex interactions between the effects of the main processing parameters, namely, the laser power and scanning speed. Accordingly, this study aims to build up a methodology which combines simulation model and experimental approach to fabricate high-density (>99.9%) IN713LC components using LPBF process. Design/methodology/approach The present study commences by performing three-dimensional (3D) heat transfer finite element simulations to predict the LPBF outcome (e.g. melt pool depth, temperature and mushy zone extent) for 33 representative sample points chosen within the laser power and scanning speed design space. The simulation results are used to train a surrogate model to predict the LPBF result for any combination of the processing conditions within the design space. Then, experimental trials were performed to choose the proper hatching space and also to define the high crack susceptibility criterion. The process map is then filtered in accordance with five quality criteria, namely, avoiding the keyhole phenomenon, improving the adhesion between the melt pool and the substrate, ensuring single-scan-track stability, avoiding excessive melt pool evaporation and suppressing the formation of micro-cracks, to determine the region of the process map which improves the relative density of the IN713LC component and minimizes the micro-cracks. The optimal processing conditions are used to fabricate IN713LC specimens for tensile testing purposes. Findings The optimal processing conditions predicted by simulation model are used to fabricate IN713LC specimens for tensile testing purposes. Experimental results show that the tensile strength and elongation of 3D-printed IN713LC tensile bar is higher than those of tensile bar made by casting. The yield strength of 791 MPa, ultimate strength of 995 MPa, elongation of 12%, and relative density of 99.94% are achieved. Originality/value The present study proposed a systematic methodology to find the processing conditions that are able to minimize the formation of micro-crack and improve the density of the high crack susceptivity metal material in LPBF process.
科研通智能强力驱动
Strongly Powered by AbleSci AI