已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Decitabine Induces Ferroptosis in Myelodysplastic Syndrome

癸他滨 细胞凋亡 活力测定 癌症研究 医学 药理学 程序性细胞死亡 阿扎胞苷 细胞毒性 流式细胞术 化学 骨髓增生异常综合症 生物化学 免疫学 体外 骨髓 DNA甲基化 基因 基因表达
作者
Qi Lv,Huaquan Wang,Zonghong Shao,Limin Xing,Lanzhu Yue,Jiaxi Liu
出处
期刊:Blood [Elsevier BV]
卷期号:134 (Supplement_1): 2995-2995 被引量:2
标识
DOI:10.1182/blood-2019-122000
摘要

Decitabine is one of the classical demethylation drugs in the treatment of myelodysplastic syndrome (MDS); however, the exact mechanism of decitabine has not been fully understood. Such knowledge is essential to develop mechanism-based, targeted approaches in the treatment of MDS. Here, we show that decitabine-induced ROS raise leads to ferroptosis in myelodysplastic syndrome cells. To investigate whether decitabine could induce ferroptosis in MDS cells and its mechanism, cell lines SKM-1 and MUTZ-1 were co-cultured with decitabine and ferroptosis inhibitor (ferrostatin-1), respectively. CCK-8 assay was used to detect the effects of drugs on cell viability. At the same time, we observed whether necroptosis inhibitor (necrostatin-1), apoptosis inhibitor (z-vad-fmk) and iron chelating agent (DFO) could reverse the inhibitory effect of decitabine on MDS cells. The results showed that, necrostatin-1 could increase the cell viability significantly. The growth-inhibitory effect of decitabine on SKM-1 and MUTZ-1 could be partially reversed by ferrostatin-1, DFO and necrostatin-1. The effect of ferrostatin-1 is the most significant. Ferroptosis inducer (erastin) could increase the cytotoxicity of decitabine at different concentrations. Flow cytometry was used to detect the ROS level. Biochemical method was used to detect the intracellular glutathione (GSH) level and glutathione peroxidase (GPXs) activity. The results showed that, the level of GSH and the activity of GPXs decreased while the ROS level increased in SKM-1 and MUTZ-1 cell lines when treated with decitabine, which could all be inhibited by ferrostatin-1. The iron overload model of C57BL/6 mice was next constructed to observe whether iron overload could induce ferroptosis. The results showed that, the concentration of hemoglobin in peripheral blood of mice was negatively correlated with intracellular Fe2+level and ferritin concentration. Iron overload led to decreased viability of bone marrow mononuclear cells (BMMNCs), which was negatively correlated with intracellular Fe2+level. Ferrostatin-1 and necrostatin-1 partially reversed the decline of cell viability in iron overload groups, and erastin promoted the proliferation of BMMNCs in iron overload mice. The level of GSH and the activity of GPXs decreased while the ROS level increased in BMMNCs of iron overload mice compared with the control. DFO could increase the level of GSH in iron overload mice. Ferrostatin-1, z-vad-fmk and DFO could increase the GPXs activity of BMMNCs in iron overload mice. Finally, to explore the role of ferroptosis in the pathogenesis of low-risk and high-risk MDS patients respectively, the BMMNCs were obtained from low-risk MDS, high-risk MDS and lymphoma patients respectively and co-cultured with decitabine and above-mentioned inhibitors. The results showed that, ferrostatin-1, necrostatin-1, z-vad-fmk could significantly reverse the inhibitory effect of decitabine of low-risk MDS patients. Necrostatin-1 and Fer-1 could also reverse the inhibitory effect of decitabine of high-risk MDS patients, although the difference was not significant. Decitabine could significantly increase the ROS level in both MDS groups, which could both be inhibited by ferrostatin-1 or promoted by erastin. Ferrostatin-1, necrostatin-1 and z-vad-fmk could significantly reverse the inhibitory effect of decitabine on GSH level in low-risk MDS patients. Ferrostatin-1 and necrostatin-1 could significantly reverse the inhibitory effect of decitabine on GSH level in high-risk MDS patients. Erastin combined with decitabine could further reduce the GSH level, and the difference was significant in high-risk MDS group. For low-risk MDS group, GPXs activity of ferrostatin-1 combined with decitabine and z-vad-fmk combined with decitabine groups were significantly higher than that of decitabine group. For high-risk MDS group, the activity of GPXs of ferrostatin-1 combined with decitabine and necrostatin-1 combined with decitabine groups were significantly higher than that of decitabine group. Erastin could further decrease the activity of GPXs when compared with decitabine group. Our findings reveal a novel therapeutic mechanism of decitabine and may open a new window for therapeutic targeting in the treatment of MDS. Figure Disclosures No relevant conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默小虾米完成签到 ,获得积分10
1秒前
科研牛马完成签到 ,获得积分10
2秒前
2秒前
4秒前
wook完成签到,获得积分10
4秒前
6秒前
KinKrit完成签到 ,获得积分10
7秒前
彩色忆雪发布了新的文献求助10
8秒前
Jenny发布了新的文献求助30
9秒前
可久斯基完成签到 ,获得积分10
9秒前
10秒前
丘比特应助彩色忆雪采纳,获得10
12秒前
结实初翠发布了新的文献求助10
12秒前
在水一方应助阿瓜采纳,获得10
15秒前
17秒前
Bin_Liu发布了新的文献求助10
18秒前
shimhjy应助稳重的峻熙采纳,获得20
22秒前
snah完成签到 ,获得积分10
22秒前
SSSSCCCCIIII完成签到,获得积分10
26秒前
Jasper应助Jenny采纳,获得100
26秒前
夏侯夏侯完成签到 ,获得积分10
29秒前
朱笑白完成签到 ,获得积分10
29秒前
沉静乾完成签到,获得积分10
29秒前
在水一方应助sln采纳,获得10
30秒前
罗rr完成签到 ,获得积分10
32秒前
zhi-pengbao完成签到,获得积分0
32秒前
今后应助zzzzzxh采纳,获得10
32秒前
dawei完成签到,获得积分10
36秒前
小马甲应助Bbsheep采纳,获得10
36秒前
37秒前
吃的饱饱呀完成签到 ,获得积分10
38秒前
Lsh173373完成签到 ,获得积分10
39秒前
poolgreen完成签到,获得积分10
41秒前
1111完成签到 ,获得积分10
42秒前
绝尘发布了新的文献求助10
42秒前
ooo完成签到 ,获得积分10
43秒前
田様应助原野采纳,获得10
43秒前
小鱼完成签到 ,获得积分10
44秒前
46秒前
余念安完成签到 ,获得积分10
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800840
求助须知:如何正确求助?哪些是违规求助? 3346351
关于积分的说明 10329131
捐赠科研通 3062791
什么是DOI,文献DOI怎么找? 1681200
邀请新用户注册赠送积分活动 807440
科研通“疑难数据库(出版商)”最低求助积分说明 763702