材料科学
热重分析
热稳定性
化学工程
Zeta电位
接触角
傅里叶变换红外光谱
涂层
混合材料
聚酯纤维
相(物质)
织物
纳米颗粒
复合材料
纳米技术
有机化学
化学
工程类
作者
Simona Ortelli,Anna Luisa Costa
出处
期刊:Coatings
[Multidisciplinary Digital Publishing Institute]
日期:2020-01-14
卷期号:10 (1): 72-72
被引量:12
标识
DOI:10.3390/coatings10010072
摘要
Organic–inorganic hybrid (ceramer) coatings were synthesized and deposited on the polyester nonwoven fabrics through the sol–gel process. This promoted the formation of an insulating barrier that was able to enhance the thermal stability and the hydrophobicity of fabrics. The hybrid phase is made of an organic network arising from different alkoxysilane precursors (trimethoxymethylalkoxysilane (TMEOS), 3-aminopropyl-trimethoxyalkoxysilane (APTMS), and tetraethylorthosilicate (TEOS)) and inorganic phase made of titanium dioxide TiO2 nanoparticles (NPs) and, in some cases, coated by P-based compound. The characterization of hybrid phase at liquid (size distribution and zeta potential of dispersed nanoparticles), dried state (crystalline phase, thermogravimetric (TGA), and Fourier transform infrared spectroscopic (FTIR) analyses), and on deposited coatings (contact angle, burn-out tests) aimed to find a correlation between the physicochemical properties of ceramer and functional performances of coated fabrics (thermal stability and hydrophobicity). The results showed that all ceramer formulations were able to improve the char formation after burn-out, in particular the highest thermal stability was obtained in the presence of TMEOS precursor and TiO2 NPs coated by P-based compound, which also provided the highest hydrophobicity. In conclusion, we presented an environmentally friendly and easily scalable process for the preparation of ceramer formulations capable of being formed into transparent, thermal-resistant, and hydrophobic fabric coatings, whose functions are extremely challenging for the textile market.
科研通智能强力驱动
Strongly Powered by AbleSci AI