Application of chemometrics to prediction of some wheat quality factors by near‐infrared spectroscopy

粉质计 化学计量学 可靠性(半导体) 近红外光谱 随机森林 质量(理念) 化学 统计 模式识别(心理学) 计算机科学 小麦面粉 数学 人工智能 食品科学 色谱法 哲学 功率(物理) 物理 认识论 量子力学
作者
Phil Williams
出处
期刊:Cereal chemistry [Wiley]
卷期号:97 (5): 958-966 被引量:17
标识
DOI:10.1002/cche.10318
摘要

Abstract Background and objectives Physical quality parameters of wheat include kernel texture and test weight, which affect classification, grading, and price. Physicochemical factors are associated with flour functionality. The objective of the work was to determine the effectiveness with which these factors could be predicted in early generations using near‐infrared spectroscopy (NIRS). Wheat breeders need to know how their new genetic lines carry these factors, which carry no identifiable absorbers in the NIR region, can be predicted in early generations, by experts in the use of NIRS and its associated chemometrics. Findings With the exception of protein content, for which absorbers are plentiful, and was included to verify the spectral quality of the sample sets, none of the strictly physical factors could be reliably predicted with the most widely used chemometric options in the hands of experts in their use. Random forest algorithms were capable of prediction of all physicochemical factors, except Farinograph development time, with a reasonable degree of reliability. Conclusions Reliable predictions of quality factors in wheat that can be predicted by NIRS with satisfactory reliability are limited to chemical and physicochemical factors for which absorbers exist in the NIR region. Significance and novelty Chemical, physicochemical, and physical factors can be predicted with acceptable reliability by NIRS using a computerized spectrophotometer in association with Random Forest software. Farinograph development time remains a challenge for NIRS application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
成就幻竹完成签到,获得积分10
刚刚
sci完成签到,获得积分10
1秒前
勤劳黎云应助木木林采纳,获得10
1秒前
1秒前
1秒前
酷波er应助123采纳,获得10
2秒前
飞飞飞发布了新的文献求助10
2秒前
2秒前
闪999发布了新的文献求助10
2秒前
orixero应助Allen0520采纳,获得10
2秒前
12a完成签到,获得积分10
2秒前
谦让的凡波完成签到,获得积分10
2秒前
3秒前
沟里的水草精完成签到,获得积分20
3秒前
Michael-布莱恩特完成签到,获得积分10
4秒前
Claudplz完成签到,获得积分10
4秒前
orixero应助背后的小笼包采纳,获得10
4秒前
能干的鞅发布了新的文献求助10
4秒前
猴哥发布了新的文献求助10
4秒前
4秒前
领导范儿应助Matt采纳,获得10
5秒前
甜美的初蓝完成签到 ,获得积分10
5秒前
高血压发布了新的文献求助10
6秒前
Chenly完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
沉淀发布了新的文献求助10
7秒前
7秒前
8秒前
纯真的雁山完成签到,获得积分10
8秒前
小二郎应助飞飞飞采纳,获得10
9秒前
断笔画墨发布了新的文献求助10
9秒前
9秒前
tian发布了新的文献求助10
9秒前
nansang完成签到,获得积分10
10秒前
不安青牛应助HHHHHH采纳,获得10
10秒前
nail发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4495733
求助须知:如何正确求助?哪些是违规求助? 3947619
关于积分的说明 12240612
捐赠科研通 3605342
什么是DOI,文献DOI怎么找? 1983061
邀请新用户注册赠送积分活动 1019721
科研通“疑难数据库(出版商)”最低求助积分说明 912257