清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Agricultural Pest Super-Resolution and Identification With Attention Enhanced Residual and Dense Fusion Generative and Adversarial Network

计算机科学 人工智能 残余物 分割 生成对抗网络 鉴定(生物学) 精准农业 模式识别(心理学) 图像分割 深度学习 计算机视觉 机器学习 农业 算法 生物 植物 生态学
作者
Qiang Dai,Xi Cheng,Yan Qiao,Youhua Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 81943-81959 被引量:30
标识
DOI:10.1109/access.2020.2991552
摘要

The growth of the most significant field crops such as rice, wheat, maize, and soybean are influenced because of various pests. And crop production is decreased due to various categories of insects. Deep learning technologies significantly increased the efficiency of identifying and controlling agricultural pests attack. However, agricultural pests images obtained are often obscure and unclear because of the sparse density of cameras deployed in the real farmland. This always makes pests difficult to recognize and monitor. Additionally, the existing classification and segmentation methods are not satisfying for the identification of low-resolution images because they are pre-trained on the clear and high-resolution datasets. Therefore, it is crucial to restore and upscale the obtained low-resolution pest images in order to improve classification accuracy and the recall rate of the instance segmentation. In this paper, we propose a generative adversarial network (GAN) with quadra-attention and residual and dense fusion mechanisms to transform low-resolution pest images. Compared with previous state-of-the-art PSNR-oriented super-resolution methods, our proposed method is more powerful in image reconstruction and achieves the state of the art performance. The experiment results show that after reconstructing with our proposed gan, the recall rate increased by 182.89% and classification accuracy also improved a lot. Besides, our proposed method could decrease the density of the camera layout in the agricultural Internet of Things (IOT) monitor systems and the cost of infrastructure, which is practical for real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
斯文败类应助哇哦采纳,获得10
7秒前
左丘山柳发布了新的文献求助10
11秒前
寂寞圣贤完成签到,获得积分10
15秒前
Chensir完成签到,获得积分10
24秒前
孟寐以求完成签到 ,获得积分10
26秒前
悲凉的冬天完成签到 ,获得积分10
27秒前
1250241652完成签到,获得积分10
38秒前
57秒前
fjhsg25完成签到,获得积分20
58秒前
你吼完成签到,获得积分10
1分钟前
fjhsg25发布了新的文献求助10
1分钟前
千陽完成签到 ,获得积分10
1分钟前
nano完成签到 ,获得积分10
1分钟前
帅气男孩完成签到,获得积分10
1分钟前
dinhogj完成签到,获得积分10
1分钟前
美满的小蘑菇完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
米奇的妙妙屋完成签到 ,获得积分10
1分钟前
V_I_G完成签到 ,获得积分10
1分钟前
starwan完成签到 ,获得积分10
1分钟前
活力的珊完成签到 ,获得积分10
1分钟前
李佳完成签到,获得积分10
1分钟前
wanci应助你吼采纳,获得10
1分钟前
乐观的星月完成签到 ,获得积分10
2分钟前
xingyi完成签到,获得积分10
2分钟前
GankhuyagJavzan完成签到,获得积分10
2分钟前
注水萝卜完成签到 ,获得积分10
2分钟前
搜集达人应助你吼采纳,获得10
2分钟前
充电宝应助眼里的萧萧雨采纳,获得10
2分钟前
Son4904完成签到,获得积分10
2分钟前
Son4904发布了新的文献求助10
2分钟前
2分钟前
Cold-Drink-Shop完成签到,获得积分10
2分钟前
Akim应助你吼采纳,获得10
2分钟前
迅速千愁完成签到 ,获得积分10
2分钟前
2分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
3分钟前
3分钟前
microtsiu完成签到 ,获得积分10
3分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4054318
求助须知:如何正确求助?哪些是违规求助? 3592254
关于积分的说明 11413992
捐赠科研通 3318359
什么是DOI,文献DOI怎么找? 1825030
邀请新用户注册赠送积分活动 896271
科研通“疑难数据库(出版商)”最低求助积分说明 817418