Deep Convolutional Neural Networks for Automated Diagnosis of Disc Herniation on Axial MRI

人工智能 计算机科学 卷积神经网络 模式识别(心理学) 规范化(社会学) 自适应直方图均衡化 Softmax函数 反锐化掩蔽 初始化 特征提取 计算机视觉 上下文图像分类 特征(语言学) 直方图均衡化 直方图 图像处理 图像(数学) 哲学 社会学 语言学 人类学 程序设计语言
作者
Elham Salehi,Sina Khanbare,Hamid Yousefi,Hajar Sharpasand,Omid Sojoodi Sheyjani
标识
DOI:10.1109/ebbt.2019.8741895
摘要

In this study, deep convolutional neural networks (CNNs) are applied in computer-aided diagnosis of three types of disc herniation disease based on lumbar Axial MR Images. AlexNet architecture is explored and evaluated in order to classify images into four groups: Normal, Bulge, Protrusion and Extrusion. First, a large-scale dataset of 2329 scanned MRI images is gathered from local medical centers, then it is extended by using Visual Rotation and Mirror Reversal techniques to 9316 images. The CNNs are used for feature extraction and feature reduction in convolution layers; in addition, classification is performed by the CNN SoftMax layer. Also, to improve MR images resolution, CLAHE (Contrast-Limited Adaptive Histogram Equalization) and USM (UnSharp Masking) filters, which are of critical importance to the increase of the final accuracy, are employed. A region of interest (ROI) is then selected to reduce the size of the input images and eliminate additional features causing overhead on network. A number of changes are made to original AlexNet model including adding a Batch Normalization layer, as well as initial Xavier initialization, with remarkable effectiveness displayed in results. Also, instead of fully-connected layers, 1×1 convolution layer is applied to test accuracy. Finally, the proposed method is compared with the results of three state-of-the-art methods. Experimental results prove that this deep CNN results enjoy an improvement compared to former proposed methods; the accuracy, sensitivity and specificity for random sub sampling method are 87.75%, 86.5% and 94.75%, respectively, achieved by AlexNet architecture of CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MSYzack发布了新的文献求助10
2秒前
2秒前
2秒前
大橘发布了新的文献求助10
5秒前
123321发布了新的文献求助10
5秒前
充电宝应助lzs采纳,获得10
6秒前
俏皮诺言发布了新的文献求助10
6秒前
告铭发布了新的文献求助10
7秒前
7秒前
今后应助花成花采纳,获得10
8秒前
深情傲柔完成签到,获得积分10
8秒前
傅宣发布了新的文献求助10
9秒前
wsft完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
我爱我的国完成签到,获得积分10
12秒前
lym关闭了lym文献求助
12秒前
12秒前
12秒前
幸运的人发布了新的文献求助10
13秒前
Zel博博完成签到,获得积分10
13秒前
bkagyin应助深情傲柔采纳,获得10
13秒前
孟原99完成签到,获得积分10
14秒前
小蘑菇应助大橘采纳,获得10
14秒前
ch3oh完成签到,获得积分10
14秒前
甜菜发布了新的文献求助10
15秒前
zkai发布了新的文献求助10
15秒前
15秒前
15秒前
cy发布了新的文献求助10
15秒前
文文发布了新的文献求助50
15秒前
xiangqing完成签到 ,获得积分10
16秒前
科研通AI5应助wsft采纳,获得30
17秒前
lssah完成签到,获得积分10
17秒前
17秒前
18秒前
斯文败类应助阳光明媚采纳,获得10
18秒前
饺子完成签到,获得积分10
18秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838822
求助须知:如何正确求助?哪些是违规求助? 3381252
关于积分的说明 10517468
捐赠科研通 3100694
什么是DOI,文献DOI怎么找? 1707708
邀请新用户注册赠送积分活动 821857
科研通“疑难数据库(出版商)”最低求助积分说明 773033