平衡
神经科学
医学
铁稳态
疾病
生物
内分泌学
病理
新陈代谢
标识
DOI:10.1056/nejmra1812053
摘要
Well-being requires the maintenance of energy stores, water, and sodium within permissive zones. The brain, as ringleader, orchestrates their homeostatic control. It senses disturbances, decides what needs to be done next, and then restores balance by altering physiological processes and ingestive drives (i.e., hunger, thirst, and salt appetite). But how the brain orchestrates this control has been unknown until recently — largely because we have lacked the ability to elucidate and then probe the underlying neuronal “wiring diagrams.” This has changed with the advent of new, transformative neuroscientific tools. When targeted to specific neurons, these tools make it possible to selectively map a neuron’s connections, measure its responses to various homeostatic challenges, and experimentally manipulate its activity. This review examines these approaches and then highlights how they are advancing, and in some cases profoundly changing, our understanding of energy, water, and salt homeostasis and the linked ingestive drives.
科研通智能强力驱动
Strongly Powered by AbleSci AI