A Drug Screening Pipeline Using 2D and 3D Patient-Derived In Vitro Models for Pre-Clinical Analysis of Therapy Response in Glioblastoma

胶质母细胞瘤 胶质瘤 脑瘤 医学 放射治疗 化疗 癌症研究 肿瘤微环境 体外 癌症 肿瘤科 生物 内科学 病理 肿瘤细胞 生物化学
作者
Sakthi Lenin,Elise Ponthier,Kaitlin G. Scheer,Erica C. F. Yeo,Melinda N. Tea,Lisa M. Ebert,Mariana Oksdath Mansilla,Santosh Poonnoose,Ulrich Baumgartner,Bryan W. Day,Rebecca J. Ormsby,Stuart M. Pitson,Guillermo A. Gómez
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:22 (9): 4322-4322 被引量:37
标识
DOI:10.3390/ijms22094322
摘要

Glioblastoma is one of the most common and lethal types of primary brain tumor. Despite aggressive treatment with chemotherapy and radiotherapy, tumor recurrence within 6–9 months is common. To overcome this, more effective therapies targeting cancer cell stemness, invasion, metabolism, cell death resistance and the interactions of tumor cells with their surrounding microenvironment are required. In this study, we performed a systematic review of the molecular mechanisms that drive glioblastoma progression, which led to the identification of 65 drugs/inhibitors that we screened for their efficacy to kill patient-derived glioma stem cells in two dimensional (2D) cultures and patient-derived three dimensional (3D) glioblastoma explant organoids (GBOs). From the screening, we found a group of drugs that presented different selectivity on different patient-derived in vitro models. Moreover, we found that Costunolide, a TERT inhibitor, was effective in reducing the cell viability in vitro of both primary tumor models as well as tumor models pre-treated with chemotherapy and radiotherapy. These results present a novel workflow for screening a relatively large groups of drugs, whose results could lead to the identification of more personalized and effective treatment for recurrent glioblastoma.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪明诗槐完成签到,获得积分10
1秒前
端庄的萝完成签到,获得积分10
1秒前
一一发布了新的文献求助10
1秒前
香蕉觅云应助ZXDDDD采纳,获得10
1秒前
乐乐应助zz采纳,获得10
1秒前
1秒前
幽灵辣椒酱完成签到,获得积分10
1秒前
2秒前
小魔兽完成签到,获得积分10
2秒前
完美天蓝完成签到 ,获得积分10
2秒前
rwq完成签到,获得积分20
2秒前
隐形萃完成签到,获得积分10
3秒前
3秒前
3秒前
xyz发布了新的文献求助10
3秒前
xuxiaoyan完成签到 ,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
隐形萃发布了新的文献求助10
6秒前
zimu012完成签到,获得积分10
6秒前
7秒前
7秒前
研友_841KWL完成签到,获得积分10
7秒前
津津乐道完成签到,获得积分10
8秒前
爱学习的小白完成签到 ,获得积分10
8秒前
简单花花完成签到,获得积分10
9秒前
醉熏的水绿完成签到 ,获得积分10
9秒前
陆小齐完成签到,获得积分10
9秒前
xiaohua发布了新的文献求助10
9秒前
Zbmd完成签到,获得积分10
9秒前
10秒前
乐乐应助朴素代芙采纳,获得10
10秒前
11秒前
cqyyy完成签到 ,获得积分10
11秒前
11秒前
12秒前
时差发布了新的文献求助10
12秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841198
求助须知:如何正确求助?哪些是违规求助? 3383176
关于积分的说明 10528587
捐赠科研通 3103166
什么是DOI,文献DOI怎么找? 1709180
邀请新用户注册赠送积分活动 822971
科研通“疑难数据库(出版商)”最低求助积分说明 773733