Statistical Learning of Facial Expressions Improves Realism of Animated Avatar Faces

动画 计算机科学 面子(社会学概念) 计算机人脸动画 人工智能 计算机动画
作者
Carl Martin Grewe,Tuo Liu,Christoph Kahl,Andrea Hildebrandt,Stefan Zachow
出处
期刊:Frontiers in virtual reality [Frontiers Media]
卷期号:2 被引量:8
标识
DOI:10.3389/frvir.2021.619811
摘要

A high realism of avatars is beneficial for virtual reality experiences such as avatar-mediated communication and embodiment. Previous work, however, suggested that the usage of realistic virtual faces can lead to unexpected and undesired effects, including phenomena like the uncanny valley. This work investigates the role of photographic and behavioral realism of avatars with animated facial expressions on perceived realism and congruence ratings. More specifically, we examine ratings of photographic and behavioral realism and their mismatch in differently created avatar faces. Furthermore, we utilize these avatars to investigate the effect of behavioral realism on perceived congruence between video-recorded physical person’s expressions and their imitations by the avatar. We compared two types of avatars, both with four identities that were created from the same facial photographs. The first type of avatars contains expressions that were designed by an artistic expert. The second type contains expressions that were statistically learned from a 3D facial expression database. Our results show that the avatars containing learned facial expressions were rated more photographically and behaviorally realistic and possessed a lower mismatch between the two dimensions. They were also perceived as more congruent to the video-recorded physical person’s expressions. We discuss our findings and the potential benefit of avatars with learned facial expressions for experiences in virtual reality and future research on enfacement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助小文殊采纳,获得10
2秒前
SUNNY完成签到 ,获得积分10
9秒前
13秒前
奋斗的妙海完成签到 ,获得积分0
16秒前
19秒前
为你钟情完成签到 ,获得积分10
24秒前
qqqq发布了新的文献求助10
26秒前
cdercder应助科研通管家采纳,获得10
27秒前
cdercder应助科研通管家采纳,获得10
27秒前
科研女仆完成签到 ,获得积分10
30秒前
哥哥发布了新的文献求助10
32秒前
海猫食堂完成签到,获得积分10
35秒前
qqqq完成签到,获得积分10
36秒前
罗罗诺亚完成签到,获得积分10
37秒前
顺心的问薇完成签到 ,获得积分10
37秒前
卞卞完成签到,获得积分10
37秒前
kevin完成签到,获得积分10
38秒前
个性惜蕊完成签到,获得积分10
40秒前
44秒前
wwj1009完成签到 ,获得积分10
44秒前
Son4904完成签到,获得积分10
47秒前
CNYDNZB完成签到 ,获得积分10
51秒前
51秒前
CYYDNDB完成签到 ,获得积分10
57秒前
小文殊发布了新的文献求助10
57秒前
TT完成签到,获得积分10
59秒前
小丑鱼儿完成签到 ,获得积分10
59秒前
包容的忆灵完成签到 ,获得积分10
1分钟前
firewood完成签到,获得积分10
1分钟前
1分钟前
MRJJJJ完成签到,获得积分10
1分钟前
1分钟前
英姑应助小文殊采纳,获得10
1分钟前
zhaoyaoshi完成签到 ,获得积分10
1分钟前
小蘑菇应助苗笑卉采纳,获得10
1分钟前
April完成签到 ,获得积分10
1分钟前
1分钟前
今后应助任性的思远采纳,获得10
1分钟前
迅速的念芹完成签到 ,获得积分10
1分钟前
聪明诗槐完成签到,获得积分10
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827379
求助须知:如何正确求助?哪些是违规求助? 3369672
关于积分的说明 10456756
捐赠科研通 3089294
什么是DOI,文献DOI怎么找? 1699847
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251