Synergisms of machine learning and constraint‐based modeling of metabolism for analysis and optimization of fermentation parameters

生化工程 计算机科学 约束(计算机辅助设计) 过程(计算) 机器学习 人工智能 数学 工程类 几何学 操作系统
作者
Mohammad Karim Khaleghi,Iman Shahidi Pour Savizi,Nathan E. Lewis,Seyed Abbas Shojaosadati
出处
期刊:Biotechnology Journal [Wiley]
卷期号:16 (11) 被引量:34
标识
DOI:10.1002/biot.202100212
摘要

Recent noteworthy advances in developing high-performing microbial and mammalian strains have enabled the sustainable production of bio-economically valuable substances such as bio-compounds, biofuels, and biopharmaceuticals. However, to obtain an industrially viable mass-production scheme, much time and effort are required. The robust and rational design of fermentation processes requires analysis and optimization of different extracellular conditions and medium components, which have a massive effect on growth and productivity. In this regard, knowledge- and data-driven modeling methods have received much attention. Constraint-based modeling (CBM) is a knowledge-driven mathematical approach that has been widely used in fermentation analysis and optimization due to its ability to predict the cellular phenotype from genotype through high-throughput means. On the other hand, machine learning (ML) is a data-driven statistical method that identifies the data patterns within sophisticated biological systems and processes, where there is inadequate knowledge to represent underlying mechanisms. Furthermore, ML models are becoming a viable complement to constraint-based models in a reciprocal manner when one is used as a pre-step of another. As a result, a more predictable model is produced. This review highlights the applications of CBM and ML independently and the combination of these two approaches for analyzing and optimizing fermentation parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助挚zhi采纳,获得10
1秒前
1秒前
1秒前
SYLH应助lxl采纳,获得20
1秒前
zhaohl完成签到,获得积分10
2秒前
拓跋问儿发布了新的文献求助10
2秒前
何求发布了新的文献求助10
3秒前
3秒前
领导范儿应助aniu采纳,获得10
3秒前
yishuihan发布了新的文献求助10
4秒前
lio发布了新的文献求助10
5秒前
5秒前
吃不胖的发布了新的文献求助10
6秒前
Xue-Wei发布了新的文献求助10
6秒前
yan2024发布了新的文献求助10
6秒前
小马甲应助孙雪松采纳,获得10
6秒前
科研通AI5应助白色圣诞节采纳,获得10
7秒前
von发布了新的文献求助10
8秒前
wanci应助微笑主宰采纳,获得10
8秒前
科研通AI5应助戈薇的背包采纳,获得10
8秒前
uu发布了新的文献求助10
10秒前
科研通AI5应助秀丽煎蛋采纳,获得10
11秒前
小玉应助molotov采纳,获得10
12秒前
lio完成签到,获得积分10
13秒前
俊逸的卿完成签到,获得积分20
13秒前
yishuihan完成签到,获得积分10
13秒前
13秒前
科研通AI5应助戈薇的背包采纳,获得10
14秒前
orixero应助爱科研的罗罗采纳,获得10
15秒前
von完成签到,获得积分10
16秒前
别催我好么完成签到,获得积分10
16秒前
可爱的函函应助潞垚采纳,获得10
16秒前
Skyyeats发布了新的文献求助10
16秒前
刻苦白凡完成签到,获得积分20
17秒前
18秒前
18秒前
芍药完成签到 ,获得积分10
20秒前
CJ完成签到,获得积分10
20秒前
lemon发布了新的文献求助20
20秒前
21秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829200
求助须知:如何正确求助?哪些是违规求助? 3371893
关于积分的说明 10469615
捐赠科研通 3091524
什么是DOI,文献DOI怎么找? 1701149
邀请新用户注册赠送积分活动 818199
科研通“疑难数据库(出版商)”最低求助积分说明 770753