Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation

缺少数据 插补(统计学) 计算机科学 数据挖掘 机器学习
作者
A. H. Alamoodi,B. B. Zaidan,A. A. Zaidan,O. S. Albahri,Juliana Chen,M. A. Chyad,Salem Garfan,Ahmed Marwan Aleesa
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:151: 111236-111236 被引量:31
标识
DOI:10.1016/j.chaos.2021.111236
摘要

Missing data is a common problem in real-world data sets and it is amongst the most complex topics in computer science and many other research domains. The common ways to cope with missing values are either by elimination or imputation depending of the volume of the missing data and its distribution nature. It becomes imperative to come up with new imputation approaches along with efficient algorithms. Though most existing imputation methods focus on a moderate amount of missing data, imputation for high missing rates over 80% is still important but challenging. Even with the existence of some works in addressing high missing volume issue, they mostly rely on imputing reference dataset (Complete Datasets for evaluation) after they create artificial missing values and impute it to measure the accuracy of their proposed techniques. So far, the option of imputing high proportions of missing values with no reference comparison dataset (Original Dataset with highly missing values) have been often ignored or overlooked. Therefore, we propose a missing data imputation approach for high volumes of missing values with no reference comparison dataset. The approach makes use of pre-processing measures and breaking the dataset into small continuous non-missing portions then using Multi Criteria Decision-making analysis to select a portion of data which is representative of the entire broken datasets. This portion helps to create reference comparisons and expands the missing dataset through artificial missing-making procedures with different percentages and imputation using different machine learning techniques. This study conducted two experiments using BMI datasets with more than 80% of missing values, derived from the National Child Development Centre (NCDRC) at Sultan Idris Education University (UPSI), Malaysia. The results show that our approach capability in reconstructing datasets with huge missing values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得10
刚刚
科研通AI6应助echo采纳,获得10
刚刚
Ava应助js25采纳,获得10
刚刚
朴实以丹发布了新的文献求助10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
Stella应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
Stride发布了新的文献求助20
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得80
2秒前
pluto应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
彭于彦祖应助科研通管家采纳,获得50
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
今后应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
Ava应助科研通管家采纳,获得30
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
李李李应助岩墩墩采纳,获得10
4秒前
4秒前
天天快乐应助577采纳,获得10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601254
求助须知:如何正确求助?哪些是违规求助? 4686675
关于积分的说明 14845664
捐赠科研通 4680054
什么是DOI,文献DOI怎么找? 2539261
邀请新用户注册赠送积分活动 1506128
关于科研通互助平台的介绍 1471283