Machine learning-based imputation soft computing approach for large missing scale and non-reference data imputation

缺少数据 插补(统计学) 计算机科学 数据挖掘 机器学习
作者
A. H. Alamoodi,B. B. Zaidan,A. A. Zaidan,O. S. Albahri,Juliana Chen,M. A. Chyad,Salem Garfan,Ahmed Marwan Aleesa
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:151: 111236-111236 被引量:31
标识
DOI:10.1016/j.chaos.2021.111236
摘要

Missing data is a common problem in real-world data sets and it is amongst the most complex topics in computer science and many other research domains. The common ways to cope with missing values are either by elimination or imputation depending of the volume of the missing data and its distribution nature. It becomes imperative to come up with new imputation approaches along with efficient algorithms. Though most existing imputation methods focus on a moderate amount of missing data, imputation for high missing rates over 80% is still important but challenging. Even with the existence of some works in addressing high missing volume issue, they mostly rely on imputing reference dataset (Complete Datasets for evaluation) after they create artificial missing values and impute it to measure the accuracy of their proposed techniques. So far, the option of imputing high proportions of missing values with no reference comparison dataset (Original Dataset with highly missing values) have been often ignored or overlooked. Therefore, we propose a missing data imputation approach for high volumes of missing values with no reference comparison dataset. The approach makes use of pre-processing measures and breaking the dataset into small continuous non-missing portions then using Multi Criteria Decision-making analysis to select a portion of data which is representative of the entire broken datasets. This portion helps to create reference comparisons and expands the missing dataset through artificial missing-making procedures with different percentages and imputation using different machine learning techniques. This study conducted two experiments using BMI datasets with more than 80% of missing values, derived from the National Child Development Centre (NCDRC) at Sultan Idris Education University (UPSI), Malaysia. The results show that our approach capability in reconstructing datasets with huge missing values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ma发布了新的文献求助10
1秒前
2秒前
5秒前
6秒前
vippp发布了新的文献求助10
7秒前
8秒前
8秒前
licheng发布了新的文献求助100
9秒前
9秒前
10秒前
11秒前
implosion发布了新的文献求助10
11秒前
852应助探花小狼采纳,获得10
12秒前
谨慎觅露完成签到,获得积分10
14秒前
天天快乐应助yx采纳,获得30
15秒前
刘祥发布了新的文献求助10
16秒前
victor发布了新的文献求助10
16秒前
阮绿凝发布了新的文献求助10
18秒前
吴茂林发布了新的文献求助10
18秒前
小狗黑头发布了新的文献求助10
19秒前
Shirley发布了新的文献求助10
19秒前
19秒前
凶狠的妙柏完成签到,获得积分10
20秒前
阮绿凝完成签到,获得积分10
22秒前
Je完成签到 ,获得积分10
22秒前
Lojong发布了新的文献求助10
24秒前
CipherSage应助刘祥采纳,获得10
24秒前
大尾尾发布了新的文献求助10
26秒前
笨笨听枫完成签到 ,获得积分10
26秒前
慈祥的大船完成签到,获得积分10
27秒前
深情安青应助drfwjuikesv采纳,获得10
28秒前
SONG完成签到,获得积分10
30秒前
30秒前
fyb完成签到,获得积分10
31秒前
Owen应助雷老板采纳,获得10
32秒前
33秒前
避橙发布了新的文献求助10
34秒前
N1发布了新的文献求助10
37秒前
蛤125发布了新的文献求助10
37秒前
恸23发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290205
求助须知:如何正确求助?哪些是违规求助? 4441629
关于积分的说明 13827865
捐赠科研通 4324246
什么是DOI,文献DOI怎么找? 2373588
邀请新用户注册赠送积分活动 1368953
关于科研通互助平台的介绍 1332922