ST-GSP

计算机科学 代表(政治) 背景(考古学) 人工智能 维数(图论) 流量(数学) 序列(生物学) 信息流 区间(图论) 深度学习 职位(财务) 地理 数学 哲学 纯数学 法学 考古 经济 几何学 组合数学 政治 生物 遗传学 语言学 政治学 财务
作者
Liang Zhao,Min Gao,Zongwei Wang
标识
DOI:10.1145/3488560.3498444
摘要

Urban flow prediction plays a crucial role in public transportation management and smart city construction. Although previous studies have achieved success in integrating spatial-temporal information to some extents, those models lack thoughtful consideration on global information and positional information in the temporal dimension, which can be summarized by three aspects: a) The models do not consider the relative position information of time axis, resulting in that the position features of flow maps are not effectively learned. b) They overlook the correlation among temporal dependencies of different scales, which lead to inaccurate global information representation. c) Those models only predict the flow map at the end of time sequence other than more flow maps before that, which results in neglecting parts of temporal features in the learning process. To solve the problems, we propose a novel model, Spatial-Temporal Global Semantic representation learning for urban flow Prediction (ST-GSP) in this paper. Specifically, for a), we design a semantic flow encoder that extracts relative positional information of time. Besides, the encoder captures the spatial dependencies and external factors of urban flow at each time interval. For b), we model the correlation among temporal dependencies of different scales simultaneously by using the multi-head self-attention mechanism, which can learn the global temporal dependencies. For c), inspired by the idea of self-supervised learning, we mask an urban flow map on the time sequence and predict it to pre-train a deep bidirectional learning model to catch the representation from its context. We conduct extensive experiments on two types of urban flows in Beijing and New York City to show that the proposed method outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助郁金香采纳,获得10
刚刚
刚刚
megan完成签到,获得积分10
2秒前
2秒前
科研通AI5应助nuonuo采纳,获得10
3秒前
JM完成签到,获得积分10
3秒前
3秒前
3秒前
ma发布了新的文献求助10
4秒前
热爱科研的997完成签到,获得积分10
4秒前
lcs发布了新的文献求助10
4秒前
没有昵称完成签到,获得积分10
4秒前
陈默完成签到 ,获得积分10
5秒前
冰魂应助vivien采纳,获得20
6秒前
kyxb发布了新的文献求助10
6秒前
7秒前
king发布了新的文献求助10
7秒前
含蓄的荔枝应助港崽宝宝采纳,获得10
8秒前
李健应助高兴的万宝路采纳,获得10
8秒前
华仔应助LGL采纳,获得10
8秒前
9秒前
董董完成签到,获得积分10
9秒前
9秒前
9秒前
李健应助高兴的夜天采纳,获得10
10秒前
Sene完成签到,获得积分10
11秒前
香蕉冬云完成签到,获得积分10
11秒前
12秒前
13秒前
香蕉冬云发布了新的文献求助10
13秒前
nuonuo完成签到,获得积分10
14秒前
14秒前
香蕉觅云应助善良的盼易采纳,获得10
14秒前
14秒前
无私博涛完成签到,获得积分10
15秒前
zzw完成签到,获得积分10
16秒前
木桶人plus完成签到 ,获得积分10
16秒前
NexusExplorer应助米恩采纳,获得10
17秒前
兴奋以蓝完成签到,获得积分20
17秒前
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
弹性和塑性力学中的有限元法 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834909
求助须知:如何正确求助?哪些是违规求助? 3377419
关于积分的说明 10498156
捐赠科研通 3096899
什么是DOI,文献DOI怎么找? 1705226
邀请新用户注册赠送积分活动 820511
科研通“疑难数据库(出版商)”最低求助积分说明 772110