Robust plant segmentation of color images based on image contrast optimization

人工智能 对比度(视觉) 分割 计算机视觉 图像分割 计算机科学 模式识别(心理学) 颜色对比度 彩色图像 图像处理 图像(数学)
作者
Yuzhen Lu,Sierra Young,Haifeng Wang,Nuwan K. Wijewardane
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106711-106711 被引量:24
标识
DOI:10.1016/j.compag.2022.106711
摘要

• A contrast-optimization approach was proposed for plant segmentation of color images. • Contrast-enhanced images were compared with index images using five image datasets. • The proposed method consistently enhanced image contrast and segmentation accuracy. • None of nine common color indices were robust enough to varying image conditions. Plant segmentation is a crucial task in computer vision applications for identification/classification and quantification of plant phenotypic features. Robust segmentation of plants is challenged by a variety of factors such as unstructured background, variable illumination, biological variations, and weak plant-background contrast. Existing color indices that are empirically developed in specific applications may not adapt robustly to varying imaging conditions. This study proposes a new method for robust, automatic segmentation of plants from background in color (red-green-blue, RGB) images. This method consists of unconstrained optimization of a linear combination of RGB component images to enhance the contrast between plant and background regions, followed by automatic thresholding of the contrast-enhanced images ( CEI s). The validity of this method was demonstrated using five plant image datasets acquired under different field or indoor conditions, with a total of 329 color images as well as ground-truth plant masks. The CEI s along with 10 common index images were evaluated in terms of image contrast and plant segmentation accuracy. The CEI s, based on the maximized foreground-background separability, achieved consistent, substantial improvements in image contrast over the index images, with an average segmentation accuracy of F1 = 95%, which is 4% better than the best accuracy obtained by the indices. The index images were found sensitive to imaging conditions and none of them performed robustly across the datasets. The proposed method is straightforward, easy to implement and can be potentially extended to nonlinear forms of color component combinations or other color spaces and generally useful in plant image analysis for precision agriculture and plant phenotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JOBZ完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
秦坦完成签到,获得积分10
2秒前
三杠发布了新的文献求助10
3秒前
绵绵球完成签到,获得积分0
3秒前
hhh发布了新的文献求助10
3秒前
3秒前
嘿嘿嘿完成签到,获得积分10
3秒前
四斤瓜发布了新的文献求助10
5秒前
小鱼医生完成签到 ,获得积分10
5秒前
Eric完成签到,获得积分10
5秒前
xiaoju完成签到,获得积分20
5秒前
wenjian完成签到,获得积分10
6秒前
不安保温杯完成签到 ,获得积分10
6秒前
samantha完成签到 ,获得积分10
6秒前
张渔歌完成签到,获得积分10
6秒前
阔达采白完成签到,获得积分10
7秒前
浮游应助shinble采纳,获得10
8秒前
TiAmo完成签到 ,获得积分10
8秒前
gg完成签到,获得积分10
8秒前
8秒前
gaoyang发布了新的文献求助10
9秒前
ljf发布了新的文献求助20
11秒前
wanci应助wjw采纳,获得10
11秒前
好困发布了新的文献求助30
12秒前
12秒前
玺月洛离完成签到,获得积分10
12秒前
12秒前
愉快书琴完成签到,获得积分10
12秒前
思源应助Zlinco采纳,获得10
13秒前
xzz完成签到,获得积分10
13秒前
Xu_W卜完成签到,获得积分10
13秒前
xavier完成签到,获得积分10
14秒前
细心的盼易完成签到 ,获得积分10
15秒前
浮游应助shinble采纳,获得10
16秒前
大椒完成签到 ,获得积分10
16秒前
shenzhou9发布了新的文献求助10
17秒前
xxh完成签到,获得积分10
17秒前
故意的书本完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093568
求助须知:如何正确求助?哪些是违规求助? 4307112
关于积分的说明 13417958
捐赠科研通 4133280
什么是DOI,文献DOI怎么找? 2264502
邀请新用户注册赠送积分活动 1268092
关于科研通互助平台的介绍 1203910