Robust plant segmentation of color images based on image contrast optimization

人工智能 对比度(视觉) 分割 计算机视觉 图像分割 计算机科学 模式识别(心理学) 颜色对比度 彩色图像 图像处理 图像(数学)
作者
Yuzhen Lu,Sierra Young,Haifeng Wang,Nuwan K. Wijewardane
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106711-106711 被引量:24
标识
DOI:10.1016/j.compag.2022.106711
摘要

• A contrast-optimization approach was proposed for plant segmentation of color images. • Contrast-enhanced images were compared with index images using five image datasets. • The proposed method consistently enhanced image contrast and segmentation accuracy. • None of nine common color indices were robust enough to varying image conditions. Plant segmentation is a crucial task in computer vision applications for identification/classification and quantification of plant phenotypic features. Robust segmentation of plants is challenged by a variety of factors such as unstructured background, variable illumination, biological variations, and weak plant-background contrast. Existing color indices that are empirically developed in specific applications may not adapt robustly to varying imaging conditions. This study proposes a new method for robust, automatic segmentation of plants from background in color (red-green-blue, RGB) images. This method consists of unconstrained optimization of a linear combination of RGB component images to enhance the contrast between plant and background regions, followed by automatic thresholding of the contrast-enhanced images ( CEI s). The validity of this method was demonstrated using five plant image datasets acquired under different field or indoor conditions, with a total of 329 color images as well as ground-truth plant masks. The CEI s along with 10 common index images were evaluated in terms of image contrast and plant segmentation accuracy. The CEI s, based on the maximized foreground-background separability, achieved consistent, substantial improvements in image contrast over the index images, with an average segmentation accuracy of F1 = 95%, which is 4% better than the best accuracy obtained by the indices. The index images were found sensitive to imaging conditions and none of them performed robustly across the datasets. The proposed method is straightforward, easy to implement and can be potentially extended to nonlinear forms of color component combinations or other color spaces and generally useful in plant image analysis for precision agriculture and plant phenotyping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴达天使发布了新的文献求助10
2秒前
3秒前
科研通AI5应助wangx采纳,获得10
4秒前
4秒前
young完成签到,获得积分10
4秒前
5秒前
觅兴完成签到,获得积分0
5秒前
淡然的初阳完成签到,获得积分10
5秒前
舒适的冰凡完成签到,获得积分10
5秒前
6秒前
樊孟完成签到,获得积分10
6秒前
sushx完成签到,获得积分10
6秒前
Ava应助Shilly采纳,获得10
6秒前
Cindy完成签到,获得积分10
7秒前
一只菜鸟完成签到 ,获得积分10
7秒前
科小辉发布了新的文献求助10
7秒前
可爱的函函应助怡然幼枫采纳,获得10
7秒前
7秒前
在水一方应助hh采纳,获得10
8秒前
天天飞人完成签到,获得积分10
8秒前
8秒前
9秒前
科研通AI5应助YWang采纳,获得10
9秒前
9秒前
uu完成签到,获得积分20
9秒前
10秒前
10秒前
pcr163应助young采纳,获得100
10秒前
hx完成签到,获得积分10
10秒前
干将莫邪完成签到,获得积分10
10秒前
XJTU_jyh完成签到,获得积分10
10秒前
miaomiao发布了新的文献求助10
11秒前
11秒前
李李李李李完成签到,获得积分10
11秒前
12秒前
WXY完成签到,获得积分10
12秒前
12秒前
uu发布了新的文献求助10
13秒前
阿白发布了新的文献求助10
13秒前
奥特曼完成签到,获得积分10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730