Dependence of the Core–Shell Structure on the Lipid Composition of Nanostructured Lipid Carriers: Implications for Drug Carrier Design

材料科学 层状结构 差示扫描量热法 各向异性 透射电子显微镜 固体脂质纳米粒 结晶学 结晶度 晶体结构 内芯 化学工程 分析化学(期刊) 化学 药物输送 纳米技术 色谱法 热力学 复合材料 物理 工程类 量子力学
作者
Ni’matul Izza,Nozomi Morishita Watanabe,Yukihiro Okamoto,Keishi Suga,Yusuf Wibisono,Naoko Kajimura,Kaoru Mitsuoka,Hiroshi Umakoshi
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:5 (7): 9958-9969 被引量:30
标识
DOI:10.1021/acsanm.2c02214
摘要

Nanostructured lipid carriers (NLCs) are a new generation of lipid vectors for drug delivery systems (DDSs), which are composed of solid and liquid lipids dispersed throughout the inner lipid matrix. This study provides molecular and physicochemical characterizations of the NLC core region. According to the fluorescence anisotropy analysis, NLCs might have a more rigid shell (high anisotropy) and a less rigid core (low anisotropy). Based on cryo-transmission electron microscopy (cryo-TEM) observations, most NLC particles had a spherical shape with a crystal-like lamellar structure that might have originated from the crystallized lipids. The NLC particles with a lower concentration of solid lipids exhibited a faceted structure formed by the crystal lattice in the outer region. This result was verified through differential scanning calorimetry (DSC), which confirmed a polymorphism of the solid lipid in NLCs. The crystal structure was confirmed by X-ray diffraction (XRD) peak intensities, which were influenced by the lipid composition. Furthermore, a linear correlation was observed between the solid lipid-to-total lipid ratio and the anisotropy gap (rgap), transition energy (ΔH), and crystallinity percentage. These parameters can be used to predict the existence of the shell, rigid state fraction, and crystals in the NLC structure. Lipid rigidity and structural heterogeneity are essential for dispersive stability and drug-loading properties. Therefore, by adjusting the lipid composition, an optimized design of NLCs with high efficacy can be achieved for DDSs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Derik采纳,获得10
刚刚
文静的冷安完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
追梦小帅完成签到,获得积分10
1秒前
悦耳的谷芹完成签到 ,获得积分10
2秒前
wanci应助黄黄采纳,获得10
2秒前
3秒前
天涯若比邻完成签到,获得积分10
3秒前
3秒前
星河完成签到 ,获得积分10
3秒前
yls123完成签到,获得积分10
3秒前
Owen应助可靠书包采纳,获得10
3秒前
刻苦以寒完成签到,获得积分10
3秒前
希望天下0贩的0应助qin采纳,获得10
3秒前
梧桐完成签到 ,获得积分10
3秒前
诚心仰完成签到 ,获得积分10
4秒前
asdfzxcv应助天马采纳,获得10
4秒前
NexusExplorer应助往也采纳,获得10
4秒前
11发布了新的文献求助10
4秒前
酷炫风华完成签到 ,获得积分10
5秒前
5秒前
PG发布了新的文献求助10
5秒前
桐桐应助岁城采纳,获得10
5秒前
whale95发布了新的文献求助10
6秒前
南方周末完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
调皮钱钱完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
权_888发布了新的文献求助10
10秒前
充电宝应助刘安娜采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
自来也发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764