Research on Adoption Behavior and Influencing Factors of Intelligent Pension Services for Elderly in Shanghai

退休金 服务(商务) 业务 政府(语言学) 供求关系 服务提供商 计算机科学 计算机安全 营销 财务 经济 微观经济学 语言学 哲学
作者
Juan Luo,Lingqi Meng
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:13: 905887-905887 被引量:12
标识
DOI:10.3389/fgene.2022.905887
摘要

With the rapid development of artificial intelligence and Internet-of-Things technology, the traditional pension service mode has changed, and intelligent pension services have become a new direction of development. Descriptive statistical analysis is conducted on the supply status and demand of intelligent pension services. It is believed that the current intelligent pension services are still in the initial stage of development, and the contradiction between supply and demand is prominent. The demand for intelligent pension of the elderly is high, but the user acceptance and satisfaction are not high. On this basis, variables were selected from individual characteristics, family situation, economic status, education level, living conditions, and other indicators for multivariate unconditional logistic regression analysis. It was found that the adoption behavior of intelligent pension service users was most significantly affected by age, number of children, living conditions, service cost, service docking channel, and equipment operation difficulty. Based on the conclusion, this article puts forward some suggestions such as taking the government as the center to realize the multi-governance of intelligent pension services, improving the supply of intelligent pension service-related facilities guided by demand, optimizing the service mode based on the platform to realize dynamic combination, and taking talents as the core to promote the high-quality development of intelligent pension services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安风完成签到 ,获得积分10
刚刚
森林木完成签到,获得积分10
1秒前
陌上尘开完成签到 ,获得积分10
2秒前
Levi李完成签到 ,获得积分10
2秒前
今年我必胖20斤完成签到,获得积分10
3秒前
mzhmhy完成签到,获得积分10
3秒前
ZERO完成签到 ,获得积分10
3秒前
清秋九应助帆帆帆采纳,获得10
3秒前
4秒前
Sh_Wen完成签到 ,获得积分10
4秒前
清秋九应助知性冰淇淋采纳,获得10
6秒前
清秋九应助知性冰淇淋采纳,获得10
6秒前
清秋九应助知性冰淇淋采纳,获得10
6秒前
清秋九应助知性冰淇淋采纳,获得10
6秒前
清秋九应助知性冰淇淋采纳,获得10
6秒前
XJY完成签到,获得积分10
7秒前
wweiweili完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
李美玥完成签到 ,获得积分10
9秒前
火星上醉山完成签到 ,获得积分10
12秒前
apple完成签到,获得积分10
13秒前
14秒前
乔青完成签到,获得积分10
14秒前
fluttershy完成签到 ,获得积分10
17秒前
18秒前
Herrily完成签到,获得积分10
18秒前
wenhuanwenxian完成签到 ,获得积分10
19秒前
19秒前
WWL完成签到 ,获得积分10
20秒前
孙一完成签到,获得积分10
22秒前
火星上的雨柏完成签到 ,获得积分10
23秒前
NMR完成签到,获得积分10
24秒前
XZZH完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
zhangkx23完成签到,获得积分10
28秒前
32秒前
32秒前
sll发布了新的文献求助10
36秒前
36秒前
桃子味完成签到,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612098
求助须知:如何正确求助?哪些是违规求助? 4696213
关于积分的说明 14890703
捐赠科研通 4731729
什么是DOI,文献DOI怎么找? 2546144
邀请新用户注册赠送积分活动 1510441
关于科研通互助平台的介绍 1473331