亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of early warning scores for predicting clinical deterioration and infection in obstetric patients

预警得分 医学 喵喵 急诊分诊台 急诊医学 接收机工作特性 预警系统 观察研究 队列研究 人口 儿科 内科学 环境卫生 工程类 航空航天工程
作者
David E. Arnolds,Kyle A. Carey,Lena Braginsky,Roxane Holt,Dana P. Edelson,Barbara M. Scavone,Matthew M. Churpek
出处
期刊:BMC Pregnancy and Childbirth [BioMed Central]
卷期号:22 (1) 被引量:16
标识
DOI:10.1186/s12884-022-04631-0
摘要

Abstract Background Early warning scores are designed to identify hospitalized patients who are at high risk of clinical deterioration. Although many general scores have been developed for the medical-surgical wards, specific scores have also been developed for obstetric patients due to differences in normal vital sign ranges and potential complications in this unique population. The comparative performance of general and obstetric early warning scores for predicting deterioration and infection on the maternal wards is not known. Methods This was an observational cohort study at the University of Chicago that included patients hospitalized on obstetric wards from November 2008 to December 2018. Obstetric scores (modified early obstetric warning system (MEOWS), maternal early warning criteria (MEWC), and maternal early warning trigger (MEWT)), paper-based general scores (Modified Early Warning Score (MEWS) and National Early Warning Score (NEWS), and a general score developed using machine learning (electronic Cardiac Arrest Risk Triage (eCART) score) were compared using the area under the receiver operating characteristic score (AUC) for predicting ward to intensive care unit (ICU) transfer and/or death and new infection. Results A total of 19,611 patients were included, with 43 (0.2%) experiencing deterioration (ICU transfer and/or death) and 88 (0.4%) experiencing an infection. eCART had the highest discrimination for deterioration ( p < 0.05 for all comparisons), with an AUC of 0.86, followed by MEOWS (0.74), NEWS (0.72), MEWC (0.71), MEWS (0.70), and MEWT (0.65). MEWC, MEWT, and MEOWS had higher accuracy than MEWS and NEWS but lower accuracy than eCART at specific cut-off thresholds. For predicting infection, eCART (AUC 0.77) had the highest discrimination. Conclusions Within the limitations of our retrospective study, eCART had the highest accuracy for predicting deterioration and infection in our ante- and postpartum patient population. Maternal early warning scores were more accurate than MEWS and NEWS. While institutional choice of an early warning system is complex, our results have important implications for the risk stratification of maternal ward patients, especially since the low prevalence of events means that small improvements in accuracy can lead to large decreases in false alarms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
松松完成签到 ,获得积分10
57秒前
1分钟前
1分钟前
QCB完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zjq完成签到 ,获得积分0
2分钟前
Yoanna应助科研通管家采纳,获得10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
4分钟前
lezbj99发布了新的文献求助10
4分钟前
4分钟前
失眠思远发布了新的文献求助10
4分钟前
袁建波完成签到 ,获得积分10
4分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得30
5分钟前
7分钟前
7分钟前
guoguo发布了新的文献求助30
7分钟前
sunrise发布了新的文献求助10
7分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
dormraider完成签到,获得积分10
7分钟前
葛怀锐完成签到 ,获得积分10
8分钟前
9分钟前
senpl发布了新的文献求助10
9分钟前
Yoanna应助科研通管家采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
合不着完成签到 ,获得积分10
10分钟前
Krim完成签到 ,获得积分0
10分钟前
SimonShaw完成签到,获得积分10
10分钟前
大胆的碧菡完成签到,获得积分10
10分钟前
嘟嘟嘟cpu完成签到,获得积分10
11分钟前
Yoanna应助科研通管家采纳,获得10
11分钟前
Yoanna应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957940
求助须知:如何正确求助?哪些是违规求助? 4219168
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190267
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625