Comparison of early warning scores for predicting clinical deterioration and infection in obstetric patients

预警得分 医学 喵喵 急诊分诊台 急诊医学 接收机工作特性 预警系统 观察研究 队列研究 人口 儿科 内科学 环境卫生 工程类 航空航天工程
作者
David E. Arnolds,Kyle A. Carey,Lena Braginsky,Roxane Holt,Dana P. Edelson,Barbara M. Scavone,Matthew M. Churpek
出处
期刊:BMC Pregnancy and Childbirth [BioMed Central]
卷期号:22 (1) 被引量:16
标识
DOI:10.1186/s12884-022-04631-0
摘要

Abstract Background Early warning scores are designed to identify hospitalized patients who are at high risk of clinical deterioration. Although many general scores have been developed for the medical-surgical wards, specific scores have also been developed for obstetric patients due to differences in normal vital sign ranges and potential complications in this unique population. The comparative performance of general and obstetric early warning scores for predicting deterioration and infection on the maternal wards is not known. Methods This was an observational cohort study at the University of Chicago that included patients hospitalized on obstetric wards from November 2008 to December 2018. Obstetric scores (modified early obstetric warning system (MEOWS), maternal early warning criteria (MEWC), and maternal early warning trigger (MEWT)), paper-based general scores (Modified Early Warning Score (MEWS) and National Early Warning Score (NEWS), and a general score developed using machine learning (electronic Cardiac Arrest Risk Triage (eCART) score) were compared using the area under the receiver operating characteristic score (AUC) for predicting ward to intensive care unit (ICU) transfer and/or death and new infection. Results A total of 19,611 patients were included, with 43 (0.2%) experiencing deterioration (ICU transfer and/or death) and 88 (0.4%) experiencing an infection. eCART had the highest discrimination for deterioration ( p < 0.05 for all comparisons), with an AUC of 0.86, followed by MEOWS (0.74), NEWS (0.72), MEWC (0.71), MEWS (0.70), and MEWT (0.65). MEWC, MEWT, and MEOWS had higher accuracy than MEWS and NEWS but lower accuracy than eCART at specific cut-off thresholds. For predicting infection, eCART (AUC 0.77) had the highest discrimination. Conclusions Within the limitations of our retrospective study, eCART had the highest accuracy for predicting deterioration and infection in our ante- and postpartum patient population. Maternal early warning scores were more accurate than MEWS and NEWS. While institutional choice of an early warning system is complex, our results have important implications for the risk stratification of maternal ward patients, especially since the low prevalence of events means that small improvements in accuracy can lead to large decreases in false alarms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助研究生采纳,获得10
刚刚
积极的尔白完成签到 ,获得积分10
刚刚
zxl发布了新的文献求助10
2秒前
dandandan完成签到 ,获得积分10
4秒前
4秒前
风清扬发布了新的文献求助10
4秒前
一定accept完成签到 ,获得积分10
5秒前
咩了个咩发布了新的文献求助10
5秒前
Jasper应助无非采纳,获得10
6秒前
7秒前
7秒前
7秒前
外向的宛白完成签到,获得积分10
7秒前
李爱国应助zhao_jk采纳,获得10
8秒前
Hello应助ll采纳,获得10
8秒前
无敌猫猫王完成签到,获得积分10
11秒前
州府十三发布了新的文献求助10
11秒前
卡塔赫纳完成签到 ,获得积分10
11秒前
易川发布了新的文献求助10
12秒前
Rui发布了新的文献求助10
12秒前
13秒前
goofs发布了新的文献求助10
13秒前
nz完成签到,获得积分10
14秒前
无非完成签到,获得积分10
14秒前
1234发布了新的文献求助20
15秒前
16秒前
goofs完成签到,获得积分10
18秒前
狂野元枫发布了新的文献求助10
18秒前
TG完成签到,获得积分20
18秒前
无非发布了新的文献求助10
19秒前
19秒前
20秒前
可可完成签到,获得积分10
21秒前
21秒前
顺利的琳应助黎明采纳,获得30
21秒前
海棠花未眠完成签到,获得积分10
22秒前
巧克力coco发布了新的文献求助10
22秒前
Ava应助大意的语芹采纳,获得10
23秒前
书文混四方完成签到 ,获得积分10
23秒前
易川完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1500
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4339126
求助须知:如何正确求助?哪些是违规求助? 3848045
关于积分的说明 12017401
捐赠科研通 3489154
什么是DOI,文献DOI怎么找? 1914941
邀请新用户注册赠送积分活动 957904
科研通“疑难数据库(出版商)”最低求助积分说明 858221