Comparison of early warning scores for predicting clinical deterioration and infection in obstetric patients

预警得分 医学 喵喵 急诊分诊台 急诊医学 接收机工作特性 预警系统 观察研究 队列研究 人口 儿科 内科学 环境卫生 工程类 航空航天工程
作者
David E. Arnolds,Kyle A. Carey,Lena Braginsky,Roxane Holt,Dana P. Edelson,Barbara M. Scavone,Matthew M. Churpek
出处
期刊:BMC Pregnancy and Childbirth [Springer Nature]
卷期号:22 (1) 被引量:16
标识
DOI:10.1186/s12884-022-04631-0
摘要

Abstract Background Early warning scores are designed to identify hospitalized patients who are at high risk of clinical deterioration. Although many general scores have been developed for the medical-surgical wards, specific scores have also been developed for obstetric patients due to differences in normal vital sign ranges and potential complications in this unique population. The comparative performance of general and obstetric early warning scores for predicting deterioration and infection on the maternal wards is not known. Methods This was an observational cohort study at the University of Chicago that included patients hospitalized on obstetric wards from November 2008 to December 2018. Obstetric scores (modified early obstetric warning system (MEOWS), maternal early warning criteria (MEWC), and maternal early warning trigger (MEWT)), paper-based general scores (Modified Early Warning Score (MEWS) and National Early Warning Score (NEWS), and a general score developed using machine learning (electronic Cardiac Arrest Risk Triage (eCART) score) were compared using the area under the receiver operating characteristic score (AUC) for predicting ward to intensive care unit (ICU) transfer and/or death and new infection. Results A total of 19,611 patients were included, with 43 (0.2%) experiencing deterioration (ICU transfer and/or death) and 88 (0.4%) experiencing an infection. eCART had the highest discrimination for deterioration ( p < 0.05 for all comparisons), with an AUC of 0.86, followed by MEOWS (0.74), NEWS (0.72), MEWC (0.71), MEWS (0.70), and MEWT (0.65). MEWC, MEWT, and MEOWS had higher accuracy than MEWS and NEWS but lower accuracy than eCART at specific cut-off thresholds. For predicting infection, eCART (AUC 0.77) had the highest discrimination. Conclusions Within the limitations of our retrospective study, eCART had the highest accuracy for predicting deterioration and infection in our ante- and postpartum patient population. Maternal early warning scores were more accurate than MEWS and NEWS. While institutional choice of an early warning system is complex, our results have important implications for the risk stratification of maternal ward patients, especially since the low prevalence of events means that small improvements in accuracy can lead to large decreases in false alarms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cc发布了新的文献求助10
刚刚
ww发布了新的文献求助10
刚刚
刚刚
onlyan发布了新的文献求助10
1秒前
1秒前
ruikomisaka发布了新的文献求助30
1秒前
2秒前
大模型应助wlxs采纳,获得10
2秒前
小二郎应助Moro采纳,获得20
2秒前
听雨轩完成签到,获得积分10
2秒前
2秒前
123发布了新的文献求助10
2秒前
3秒前
ying完成签到,获得积分10
4秒前
小吕完成签到,获得积分10
4秒前
4秒前
慕青应助123采纳,获得10
4秒前
斯文败类应助HuangJiajia_FZU采纳,获得10
4秒前
puff完成签到,获得积分10
5秒前
xo80完成签到 ,获得积分10
5秒前
5秒前
tyy完成签到,获得积分10
5秒前
cc完成签到,获得积分10
6秒前
倪好完成签到,获得积分10
6秒前
6秒前
6秒前
ldh应助奇思妙想采纳,获得10
6秒前
bkagyin应助Jane采纳,获得10
6秒前
fyj发布了新的文献求助10
6秒前
ldh应助hhy采纳,获得10
7秒前
liu完成签到,获得积分10
7秒前
7秒前
寒冷班给寒冷班的求助进行了留言
7秒前
研友_VZG7GZ应助单纯的香寒采纳,获得10
7秒前
大苏打发布了新的文献求助10
8秒前
kxxx发布了新的文献求助10
8秒前
holder完成签到,获得积分10
8秒前
852应助可靠的映秋采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506110
求助须知:如何正确求助?哪些是违规求助? 4601589
关于积分的说明 14477878
捐赠科研通 4535577
什么是DOI,文献DOI怎么找? 2485508
邀请新用户注册赠送积分活动 1468423
关于科研通互助平台的介绍 1440915