Attention-based Knowledge Graph Representation Learning for Predicting Drug-drug Interactions

计算机科学 成对比较 任务(项目管理) 代表(政治) 编码器 节点(物理) 图形 钥匙(锁) 机器学习 人工智能 特征学习 理论计算机科学 结构工程 政治 操作系统 政治学 工程类 经济 管理 法学 计算机安全
作者
Xiaorui Su,Lun Hu,Zhu‐Hong You,Pengwei Hu,Bo-Wei Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:70
标识
DOI:10.1093/bib/bbac140
摘要

Abstract Drug–drug interactions (DDIs) are known as the main cause of life-threatening adverse events, and their identification is a key task in drug development. Existing computational algorithms mainly solve this problem by using advanced representation learning techniques. Though effective, few of them are capable of performing their tasks on biomedical knowledge graphs (KGs) that provide more detailed information about drug attributes and drug-related triple facts. In this work, an attention-based KG representation learning framework, namely DDKG, is proposed to fully utilize the information of KGs for improved performance of DDI prediction. In particular, DDKG first initializes the representations of drugs with their embeddings derived from drug attributes with an encoder–decoder layer, and then learns the representations of drugs by recursively propagating and aggregating first-order neighboring information along top-ranked network paths determined by neighboring node embeddings and triple facts. Last, DDKG estimates the probability of being interacting for pairwise drugs with their representations in an end-to-end manner. To evaluate the effectiveness of DDKG, extensive experiments have been conducted on two practical datasets with different sizes, and the results demonstrate that DDKG is superior to state-of-the-art algorithms on the DDI prediction task in terms of different evaluation metrics across all datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
波比不菜应助AHR采纳,获得10
刚刚
JamesPei应助AHR采纳,获得10
刚刚
共享精神应助AHR采纳,获得10
刚刚
可爱的函函应助AHR采纳,获得10
刚刚
无花果应助AHR采纳,获得10
刚刚
coolkid应助地瓜叶采纳,获得10
刚刚
斯文败类应助AHR采纳,获得10
1秒前
华仔应助AHR采纳,获得10
1秒前
Hello应助AHR采纳,获得10
1秒前
哈哈应助AHR采纳,获得10
1秒前
纯牛马完成签到,获得积分20
1秒前
1秒前
汉堡包应助小李采纳,获得10
1秒前
njzqs完成签到,获得积分10
1秒前
cloverdown完成签到,获得积分10
2秒前
津津乐道完成签到,获得积分10
3秒前
tjfwg完成签到,获得积分10
4秒前
力量发布了新的文献求助10
4秒前
2150号完成签到,获得积分10
4秒前
ddd发布了新的文献求助10
4秒前
xjz240221完成签到 ,获得积分10
5秒前
6秒前
啊撒网大大e完成签到,获得积分10
6秒前
大福老师完成签到,获得积分10
6秒前
dbzdq发布了新的文献求助10
6秒前
7秒前
小星云完成签到,获得积分10
8秒前
爱吃肥牛完成签到 ,获得积分10
8秒前
Cloud发布了新的文献求助10
8秒前
背后的萧发布了新的文献求助10
9秒前
9秒前
9秒前
英吉利25发布了新的文献求助10
10秒前
小付完成签到 ,获得积分10
10秒前
yuanshl1985发布了新的文献求助10
11秒前
鲜于枫完成签到,获得积分10
13秒前
13秒前
Cloud完成签到,获得积分0
13秒前
上官若男应助zz采纳,获得10
13秒前
季忆发布了新的文献求助10
14秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3892686
求助须知:如何正确求助?哪些是违规求助? 3435446
关于积分的说明 10793249
捐赠科研通 3160482
什么是DOI,文献DOI怎么找? 1745583
邀请新用户注册赠送积分活动 842948
科研通“疑难数据库(出版商)”最低求助积分说明 786984