Multi-parametric MRI-based radiomics for the diagnosis of malignant soft-tissue tumor

列线图 医学 无线电技术 磁共振成像 接收机工作特性 置信区间 放射科 逻辑回归 软组织 核医学 肿瘤科 内科学
作者
Zhibin Yue,Xiaoyu Wang,Tao Yu,Shengjie Shang,Guanyu Liu,Wenwen Jing,Huazhe Yang,Yahong Luo,Xiran Jiang
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:91: 91-99 被引量:13
标识
DOI:10.1016/j.mri.2022.05.003
摘要

To develop and validate a multiparametric magnetic resonance imaging-based radiomics nomogram for differentiating malignant and benign soft-tissue tumors.A total of 91 patients with pathologically confirmed soft-tissue tumors were enrolled between January 2017 and October 2020. Forty-eight patients were consecutively enrolled between November 2020 and March 2022, as a time-independent cohort. All patients underwent contrast-enhanced T1-weighted and T2-weighted fat-suppression magnetic resonance scans at 3.0 T. Radiomics features were extracted and selected from the two modalities to develop the radiomics signature. Significant clinical/morphological characteristics were identified using a multivariate logistic regression analysis. The least absolute shrinkage and selection operator regression were applied to identify discriminative features. A clinical-radiomics nomogram was constructed based on clinical/morphological characteristics and radiomics features. Finally, the performance of the nomogram was validated using the receiver operating characteristic and decision curve analysis (DCA).Six features were selected to establish the combined RS. Size, margin, and peritumoral edema were identified as the most important clinical and morphological factors, respectively. The radiomics signature outperformed the clinical model in terms of AUC and sensitivity. The nomogram integrating the combined RS, size, margin, and peritumoral edema achieved favorable predictive efficacy, generating AUCs of 0.954 (95% confidence interval [CI]: 0.907-1.000, Sen = 0.861, Spe = 0.917), 0.962 (95% CI: 0.901-1.000, Sen = 0.944, Spe = 0.923), and 0.935 (95% CI: 0.871-0.998, Sen = 0.815, Spe = 0.952) in the training (n = 60), validation (n = 31) and time-independent (n = 48) cohorts, respectively. The DCA curve indicated good clinical usefulness of the nomogram.Our study demonstrated the clinical potential of multiparametric MRI-based radiomics in distinguishing malignant from benign soft-tissue tumors, which can be considered as a noninvasive tool for individual treatment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鸣笛应助甜美帅哥采纳,获得10
2秒前
迢迢万里给迢迢万里的求助进行了留言
3秒前
3秒前
3秒前
乐乐应助沈迎南采纳,获得30
4秒前
4秒前
无花果应助1sss采纳,获得10
4秒前
5秒前
不想干活应助不晚采纳,获得50
6秒前
李智轩关注了科研通微信公众号
7秒前
xht发布了新的文献求助10
7秒前
Hu完成签到,获得积分10
7秒前
风行完成签到,获得积分10
8秒前
gnufgg完成签到,获得积分10
8秒前
室内设计发布了新的文献求助10
8秒前
所所应助utopia采纳,获得10
8秒前
森眸发布了新的文献求助10
9秒前
DAOXIAN发布了新的文献求助10
9秒前
sky完成签到,获得积分10
10秒前
柏林寒冬应助xzy998采纳,获得10
12秒前
12秒前
亓灬完成签到,获得积分10
12秒前
x-17完成签到,获得积分10
13秒前
英姑应助xht采纳,获得10
13秒前
研友_VZG7GZ应助慈祥的煎蛋采纳,获得10
14秒前
15秒前
15秒前
科研通AI6应助jjdbqml采纳,获得30
15秒前
所所应助努力的小明明采纳,获得10
15秒前
感动的梦柏完成签到,获得积分10
15秒前
在水一方应助DAOXIAN采纳,获得10
16秒前
淡定的往事完成签到,获得积分10
17秒前
斯文败类应助chezi采纳,获得30
17秒前
18秒前
18秒前
19秒前
JamesPei应助华雍采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4226659
求助须知:如何正确求助?哪些是违规求助? 3760288
关于积分的说明 11819847
捐赠科研通 3421286
什么是DOI,文献DOI怎么找? 1877689
邀请新用户注册赠送积分活动 930966
科研通“疑难数据库(出版商)”最低求助积分说明 838921