已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-parametric MRI-based radiomics for the diagnosis of malignant soft-tissue tumor

列线图 医学 无线电技术 磁共振成像 接收机工作特性 置信区间 放射科 逻辑回归 软组织 核医学 肿瘤科 内科学
作者
Zhibin Yue,Xiaoyu Wang,Tao Yu,Shengjie Shang,Guanyu Liu,Wenwen Jing,Huazhe Yang,Yahong Luo,Xiran Jiang
出处
期刊:Magnetic Resonance Imaging [Elsevier BV]
卷期号:91: 91-99 被引量:12
标识
DOI:10.1016/j.mri.2022.05.003
摘要

To develop and validate a multiparametric magnetic resonance imaging-based radiomics nomogram for differentiating malignant and benign soft-tissue tumors.A total of 91 patients with pathologically confirmed soft-tissue tumors were enrolled between January 2017 and October 2020. Forty-eight patients were consecutively enrolled between November 2020 and March 2022, as a time-independent cohort. All patients underwent contrast-enhanced T1-weighted and T2-weighted fat-suppression magnetic resonance scans at 3.0 T. Radiomics features were extracted and selected from the two modalities to develop the radiomics signature. Significant clinical/morphological characteristics were identified using a multivariate logistic regression analysis. The least absolute shrinkage and selection operator regression were applied to identify discriminative features. A clinical-radiomics nomogram was constructed based on clinical/morphological characteristics and radiomics features. Finally, the performance of the nomogram was validated using the receiver operating characteristic and decision curve analysis (DCA).Six features were selected to establish the combined RS. Size, margin, and peritumoral edema were identified as the most important clinical and morphological factors, respectively. The radiomics signature outperformed the clinical model in terms of AUC and sensitivity. The nomogram integrating the combined RS, size, margin, and peritumoral edema achieved favorable predictive efficacy, generating AUCs of 0.954 (95% confidence interval [CI]: 0.907-1.000, Sen = 0.861, Spe = 0.917), 0.962 (95% CI: 0.901-1.000, Sen = 0.944, Spe = 0.923), and 0.935 (95% CI: 0.871-0.998, Sen = 0.815, Spe = 0.952) in the training (n = 60), validation (n = 31) and time-independent (n = 48) cohorts, respectively. The DCA curve indicated good clinical usefulness of the nomogram.Our study demonstrated the clinical potential of multiparametric MRI-based radiomics in distinguishing malignant from benign soft-tissue tumors, which can be considered as a noninvasive tool for individual treatment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuqi67完成签到,获得积分10
2秒前
崔凌翠发布了新的文献求助10
5秒前
will完成签到 ,获得积分10
8秒前
烁果累累完成签到 ,获得积分10
8秒前
格物致知完成签到,获得积分10
8秒前
洛神完成签到 ,获得积分10
8秒前
rofsc完成签到 ,获得积分10
8秒前
Jemma完成签到 ,获得积分10
8秒前
10秒前
肉肉完成签到 ,获得积分10
10秒前
dream完成签到 ,获得积分10
12秒前
科研通AI2S应助谭歆柔采纳,获得10
14秒前
Eric完成签到,获得积分10
15秒前
舒适觅儿完成签到,获得积分10
15秒前
学习使我快乐完成签到 ,获得积分10
16秒前
19秒前
小蘑菇应助Fin2046采纳,获得10
22秒前
斯文麦片完成签到 ,获得积分10
22秒前
听雪发布了新的文献求助10
23秒前
谭歆柔完成签到,获得积分10
23秒前
24秒前
潮人完成签到 ,获得积分10
26秒前
29秒前
30秒前
kk完成签到 ,获得积分10
34秒前
max完成签到,获得积分10
34秒前
Godric147完成签到 ,获得积分10
35秒前
谭歆柔发布了新的文献求助10
36秒前
ryeong完成签到,获得积分10
40秒前
啊怪完成签到 ,获得积分10
42秒前
ZYQ完成签到 ,获得积分10
43秒前
鲤鱼安青完成签到 ,获得积分10
44秒前
香锅不要辣完成签到 ,获得积分10
44秒前
47秒前
兰月满楼完成签到 ,获得积分10
48秒前
tao ism完成签到 ,获得积分0
49秒前
听雪发布了新的文献求助10
51秒前
宇宇完成签到 ,获得积分10
52秒前
5High_0完成签到 ,获得积分10
54秒前
Owen应助Mason采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778970
求助须知:如何正确求助?哪些是违规求助? 3324697
关于积分的说明 10219359
捐赠科研通 3039705
什么是DOI,文献DOI怎么找? 1668400
邀请新用户注册赠送积分活动 798648
科研通“疑难数据库(出版商)”最低求助积分说明 758487