Deep Learning System for Defect Classification of Solar Panel Cells

光伏系统 深度学习 计算机科学 人工智能 水准点(测量) 可再生能源 环境科学 机器学习 实时计算 工程类 电气工程 地图学 地理
作者
H. Tella,M. Mohandes,Bo Liu,S. Rehman,Ali Al‐Shaikhi
标识
DOI:10.1109/cicn56167.2022.10008277
摘要

Solar photovoltaic technology can be regarded as a safe energy generation system with relatively less pollution, noiseless, and abundant solar source. The operation and maintenance costs for solar panels are almost negligible as compared to costs of other renewable energy systems. However, due to the exposure to different weather conditions like extreme heat, humidity, dust storms and rain, the panel modules are liable to kind of defects which lead to power degradation, shading, bridging, power loss and fire hazard. Visual inspection of solar panel cells by experts is stressful, time consuming and unreliable. The Electroluminescence (EL) method with the use of infra-red cameras make deep learning algorithms promising in solving the problem. In this paper, we applied several deep learning networks such as AlexNet, SENet, ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, GoogleNet (Inception V1), Xception, Vision Transformer (Vit), YOLOv3, and SqueezeNet to classify solar PV cell defects. We applied the models on the 2,624 elpv benchmark images using both binary and four classifications. But due to limited defect classifications with elpv benchmark dataset, we extracted EL images from publicly available datasets of a total of 18,347 Photovoltaic (PV) cells images with 11 types of defects in addition to the non-defective PV cells. We compared the results of the elpv benchmark with the extracted elpv images using accuracy, F1 score, precision and recall metrics. The results show that the xception model has the highest accuracy from 56.296% on elpv benchmark to 91.399% on the extracted elpv datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fred发布了新的文献求助10
刚刚
boyue发布了新的文献求助10
1秒前
qlmian完成签到,获得积分10
2秒前
搜集达人应助Nan采纳,获得10
3秒前
3秒前
Ava应助王WW采纳,获得10
4秒前
科研小白完成签到,获得积分10
5秒前
丘比特应助务实笔头采纳,获得10
5秒前
5秒前
6秒前
算命的完成签到,获得积分10
6秒前
8秒前
Amy完成签到 ,获得积分10
8秒前
FWCY发布了新的文献求助10
8秒前
在水一方应助柯擎汉采纳,获得10
8秒前
CipherSage应助哈哈哈采纳,获得10
8秒前
9秒前
科研小白发布了新的文献求助10
9秒前
9秒前
明亮的颖发布了新的文献求助10
10秒前
沈忆之发布了新的文献求助10
10秒前
无花果应助乘风破浪采纳,获得10
10秒前
搜集达人应助虫二先生采纳,获得10
11秒前
华仔应助逗号采纳,获得10
12秒前
上官若男应助咕咕咕咕咕采纳,获得10
13秒前
科研通AI5应助年轻的迎南采纳,获得10
13秒前
王WW发布了新的文献求助10
13秒前
14秒前
高大一一发布了新的文献求助10
14秒前
16秒前
18秒前
18秒前
LILY发布了新的文献求助30
19秒前
陌路发布了新的文献求助10
19秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
QL发布了新的文献求助10
23秒前
Ava应助Q同学采纳,获得10
24秒前
电生理达人给电生理达人的求助进行了留言
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A Case Study on Hotels as Noncongregate Emergency Living Accommodations for Returning Citizens 800
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028962
求助须知:如何正确求助?哪些是违规求助? 4264674
关于积分的说明 13295161
捐赠科研通 4073013
什么是DOI,文献DOI怎么找? 2227727
邀请新用户注册赠送积分活动 1236375
关于科研通互助平台的介绍 1160517