Evaluation Among Trace Elements, Clinical Parameters and Type 1 Diabetes According to Sex: A New Sight of Auxiliary Prediction in Negative Insulin Auto-antibodies Population

微量元素 糖尿病 人口 跟踪(心理语言学) 1型糖尿病 医学 内科学 化学 内分泌学 环境卫生 语言学 哲学 有机化学
作者
Jiatong Chai,Yiting Wang,Zeyu Sun,Qi Zhou,Jiancheng Xu
出处
期刊:Journal of Trace Elements in Medicine and Biology [Elsevier]
卷期号:: 127100-127100
标识
DOI:10.1016/j.jtemb.2022.127100
摘要

Type 1 diabetes (T1D) exhibited sex-specific metabolic status including oxidative stress with dynamic change of trace elements, which emphasized the importance of the evaluation of trace elements according to sex. Besides, the most significant characteristic, insulin auto-antibodies, could not be found in all T1D patients, which needed the auxiliary prediction of clinical parameters. And it would benefit the early detection and treatment if some high-risk groups of T1D could predict and prevent the occurrence of disease through common clinical parameters. Hence, there was an urgent need to construct more effective and scientific statistical prediction models to serve clinic better. This study aimed to evaluate the sex-specific levels of trace elements and the relationship between trace elements and clinical parameters in T1D, and construct sex-specific auxiliary prediction model combined with trace elements and clinical parameters. A total of 105 T1D patients with negative insulin auto-antibodies and 105 age/sex-matched healthy individuals were enrolled in First Hospital of Jilin University. Inductively Coupled Plasma Mass Spectrometry was performed for the measurement of calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in the serum, and the data of clinical parameters were received from medical record system. The lambda-mu-sigma method was used to evaluate the relationship between abnormal clinical parameters and trace elements. Training set and validation set were divided for the construction of predictable models in males and females: clinical parameters model, trace element model and the combined model (clinical parameters and trace elements). Goodness fit test, decision curve analysis and other related statistical methods were used to perform data analysis. Lower levels of Mg, Ca, Fe in the serum were found in T1D population in females compared with healthy population, while levels of Fe, Zn and Cu of serum in T1D individuals were higher than those of healthy population in males. Levels of serum Mg, Fe and Cu in T1D group were found with significant sex difference for (P<0.05), and the levels of Fe and Cu in serum of males were higher than those of females, level of serum Mg in males was lower than those of females. Levels of serum Mg and Zn showed fluctuation trend with increased numbers of abnormal clinical parameters (NACP) in males. Serum Zn in females showed consistent elevated trend with NACP; serum Se increased first and then decreased with NACP in males and females. The auxiliary prediction model (Triglyceride, Total protein, serum Mg) was found with the highest predicted efficiency in males (AUC=0.993), while the model in females (Apolipoprotein A, Creatinine, Fe, Se, Zn/Cu ratio) showed the best predicted efficiency (AUC=0.951). The models had passed the verification in validation set, and Chi-square goodness-of-fit test, DCA results both confirmed their satisfactory clinical applicability. Sex-specific difference were found in serum Mg, Fe and Cu in T1D. The combination of triglyceride, total protein and serum Mg for males, and apolipoprotein A, creatinine, Fe, Se, Zn/Cu ratio for females could effectively predict T1D in patients with negative anti-bodies, which would provide alarm for the population with high-risk of T1D and serve the T1D prediction in patients with negative anti-bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
日月星完成签到,获得积分10
1秒前
王文静完成签到,获得积分10
1秒前
旷野完成签到,获得积分10
2秒前
3秒前
芸栖完成签到 ,获得积分10
3秒前
zhen完成签到,获得积分10
4秒前
风中思松完成签到,获得积分10
4秒前
hsss完成签到,获得积分10
5秒前
专一的白完成签到,获得积分10
6秒前
zhl完成签到,获得积分10
6秒前
Aurora.H完成签到,获得积分10
7秒前
不必要再讨论适合与否完成签到,获得积分0
7秒前
7秒前
感动板凳完成签到,获得积分10
7秒前
小休完成签到 ,获得积分10
7秒前
欣慰语柳完成签到,获得积分10
8秒前
8秒前
8秒前
研友_ZeoKYL完成签到,获得积分10
8秒前
Physio完成签到,获得积分10
9秒前
转山转水完成签到,获得积分10
10秒前
祖f完成签到,获得积分10
11秒前
Cleo应助温暖的寻雪采纳,获得10
11秒前
hanhan发布了新的文献求助10
12秒前
慕容羊青发布了新的文献求助10
12秒前
Sylvie发布了新的文献求助10
12秒前
故意的冰淇淋完成签到 ,获得积分0
12秒前
zyy发布了新的文献求助10
13秒前
感动板凳发布了新的文献求助10
13秒前
Zhuzhu完成签到 ,获得积分10
13秒前
陈好好完成签到 ,获得积分10
14秒前
高贵的映安完成签到,获得积分10
14秒前
14秒前
14秒前
顾矜应助洋地黄采纳,获得10
14秒前
夜包子123应助可露丽采纳,获得10
15秒前
DQ8733完成签到,获得积分10
15秒前
过时的砖头完成签到 ,获得积分10
15秒前
LingC完成签到,获得积分10
16秒前
斯文败类应助Murphy采纳,获得10
16秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347908
求助须知:如何正确求助?哪些是违规求助? 4482121
关于积分的说明 13948889
捐赠科研通 4380545
什么是DOI,文献DOI怎么找? 2407020
邀请新用户注册赠送积分活动 1399566
关于科研通互助平台的介绍 1372819