亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnosis method for abnormal data in bridge health monitoring using BMA-assisted EasyEnsemble-AlexNet

桥(图论) 计算机科学 结构健康监测 计算机图形学(图像) 数据挖掘 模式识别(心理学) 人工智能 结构工程 工程类 医学 内科学
作者
Jingzhou Xin,Chen Wang,Xia Meng,Qizhi Tang,Yan Jiang,Hong Zhang,Jianting Zhou
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
标识
DOI:10.1142/s0219455426501543
摘要

Abnormal data diagnosis in the bridge health monitoring (BHM) system is of great significance to improve the credibility of structural safety assessment. However, a notable imbalance exists between the number of abnormal and normal samples in deep learning-based methods, resulting in a lower accuracy when identifying limited abnormal categories. To this end, this study proposes an abnormal data diagnosis method for BHM using EasyEnsemble, AlexNet and Bayesian model averaging (BMA). First, multiple balanced EasyEnsemble subsets are constructed from the training set by random sampling. Subsequently, each subset is used for the training of a single AlexNet model, and the posterior probability of each model is determined by calculating their log-likelihood on the training subset. Then, the prediction results of all models are combined by BMA according to their posterior probabilities. Finally, the effectiveness of this method is verified using data from a BHM system. The results show that the proposed method significantly strengthens the diagnosis performance of abnormal data, achieving an overall accuracy of 96.66%. Compared to traditional methods, the proposed method offers higher training efficiency and diagnosis accuracy with fewer samples, especially for similar abnormal categories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
18秒前
尹静涵完成签到 ,获得积分10
18秒前
20秒前
谦让秋白发布了新的文献求助30
23秒前
31秒前
50秒前
我说我话完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
等候完成签到 ,获得积分10
1分钟前
赘婿应助Hhhhhhhhhh采纳,获得10
1分钟前
1分钟前
1分钟前
YAO完成签到 ,获得积分10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Huzhu应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
Lauren完成签到 ,获得积分10
2分钟前
2分钟前
hua完成签到,获得积分10
2分钟前
2分钟前
Hhhhhhhhhh发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493874
求助须知:如何正确求助?哪些是违规求助? 4591849
关于积分的说明 14434868
捐赠科研通 4524282
什么是DOI,文献DOI怎么找? 2478775
邀请新用户注册赠送积分活动 1463754
关于科研通互助平台的介绍 1436534