A clinical–radiomics model based on noncontrast computed tomography to predict hemorrhagic transformation after stroke by machine learning: a multicenter study

医学 无线电技术 神经组阅片室 接收机工作特性 溶栓 队列 放射科 介入放射学 人工智能 机器学习 内科学 神经学 计算机科学 精神科 心肌梗塞
作者
Huanhuan Ren,Haojie Song,Jingjie Wang,Hua Xiong,Bangyuan Long,Meilin Gong,Jiayang Liu,Zhanping He,Li Liu,Xili Jiang,Lifeng Li,Hanjian Li,Shaoguo Cui,Yongmei Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:14 (1) 被引量:24
标识
DOI:10.1186/s13244-023-01399-5
摘要

To build a clinical-radiomics model based on noncontrast computed tomography images to identify the risk of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT).A total of 517 consecutive patients with AIS were screened for inclusion. Datasets from six hospitals were randomly divided into a training cohort and an internal cohort with an 8:2 ratio. The dataset of the seventh hospital was used for an independent external verification. The best dimensionality reduction method to choose features and the best machine learning (ML) algorithm to develop a model were selected. Then, the clinical, radiomics and clinical-radiomics models were developed. Finally, the performance of the models was measured using the area under the receiver operating characteristic curve (AUC).Of 517 from seven hospitals, 249 (48%) had HT. The best method for choosing features was recursive feature elimination, and the best ML algorithm to build models was extreme gradient boosting. In distinguishing patients with HT, the AUC of the clinical model was 0.898 (95% CI 0.873-0.921) in the internal validation cohort, and 0.911 (95% CI 0.891-0.928) in the external validation cohort; the AUC of radiomics model was 0.922 (95% CI 0.896-0.941) and 0.883 (95% CI 0.851-0.902), while the AUC of clinical-radiomics model was 0.950 (95% CI 0.925-0.967) and 0.942 (95% CI 0.927-0.958) respectively.The proposed clinical-radiomics model is a dependable approach that could provide risk assessment of HT for patients who receive IVT after stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助nusiew采纳,获得50
1秒前
张超完成签到 ,获得积分10
1秒前
山大琦子发布了新的文献求助10
2秒前
小九九发布了新的文献求助10
3秒前
科研通AI5应助黎行云采纳,获得10
3秒前
王欣发布了新的文献求助10
3秒前
4秒前
华仔应助科研小菜鸡采纳,获得10
4秒前
orixero应助Bruce采纳,获得10
6秒前
7秒前
李健的小迷弟应助Vince采纳,获得10
7秒前
9秒前
9秒前
fff发布了新的文献求助10
10秒前
10秒前
10秒前
烟花应助Yr采纳,获得10
10秒前
科研宇完成签到,获得积分10
10秒前
英姑应助刘亚博采纳,获得10
11秒前
12秒前
Bunny发布了新的文献求助10
13秒前
leibingo完成签到 ,获得积分10
13秒前
路路发布了新的文献求助30
13秒前
乐乐应助123456采纳,获得10
13秒前
ylj发布了新的文献求助10
14秒前
14秒前
康舟发布了新的文献求助30
15秒前
qweasdzxcqwe发布了新的文献求助10
15秒前
Werido完成签到 ,获得积分10
15秒前
张明发布了新的文献求助10
16秒前
18秒前
18秒前
Huang发布了新的文献求助10
18秒前
小强123完成签到,获得积分10
19秒前
20秒前
楠楠完成签到,获得积分10
21秒前
今后应助欢hhh采纳,获得30
21秒前
研友_VZG7GZ应助ssk采纳,获得10
22秒前
亮不卡完成签到 ,获得积分10
22秒前
22秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 760
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4148110
求助须知:如何正确求助?哪些是违规求助? 3684617
关于积分的说明 11641636
捐赠科研通 3378434
什么是DOI,文献DOI怎么找? 1854087
邀请新用户注册赠送积分活动 916422
科研通“疑难数据库(出版商)”最低求助积分说明 830341