Co-Attention Fusion Network for Multimodal Skin Cancer Diagnosis

串联(数学) 卷积神经网络 模式识别(心理学) 保险丝(电气) 人工智能 计算机科学 块(置换群论) 深度学习 模式 模态(人机交互) 融合 特征提取 特征(语言学) 代表(政治) 图像融合 图像(数学) 数学 哲学 法学 电气工程 社会学 工程类 几何学 组合数学 政治 语言学 社会科学 政治学
作者
Xiaoyu He,Yong Wang,Shuang Zhao,Xiang Chen
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:133: 108990-108990 被引量:31
标识
DOI:10.1016/j.patcog.2022.108990
摘要

Recently, multimodal image-based methods have shown great performance in skin cancer diagnosis. These methods usually use convolutional neural networks (CNNs) to extract the features of two modalities (i.e., dermoscopy and clinical images), and fuse these features for classification. However, they commonly have the following two shortcomings: 1) the feature extraction processes of the two modalities are independent and lack cooperation, which may lead to limited representation ability of the extracted features, and 2) the multimodal fusion operation is a simple concatenation followed by convolutions, thus causing rough fusion features. To address these two issues, we propose a co-attention fusion network (CAFNet), which uses two branches to extract the features of dermoscopy and clinical images and a hyper-branch to refine and fuse these features at all stages of the network. Specifically, the hyper-branch is composed of multiple co-attention fusion (CAF) modules. In each CAF module, we first design a co-attention (CA) block with a cross-modal attention mechanism to achieve the cooperation of two modalities, which enhances the representation ability of the extracted features through mutual guidance between the two modalities. Following the CA block, we further propose an attention fusion (AF) block that dynamically selects appropriate fusion ratios to conduct the pixel-wise multimodal fusion, which can generate fine-grained fusion features. In addition, we propose a deep-supervised loss and a combined prediction method to obtain a more robust prediction result. The results show that CAFNet achieves the average accuracy of 76.8% on the seven-point checklist dataset and outperforms state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdfqwer应助xingsixs采纳,获得10
刚刚
DSR完成签到,获得积分10
1秒前
2秒前
bkagyin应助张可采纳,获得10
2秒前
CipherSage应助Largequail采纳,获得10
4秒前
4秒前
ding应助yiyi采纳,获得10
5秒前
5秒前
6秒前
善学以致用应助Shirley Lv采纳,获得10
6秒前
7秒前
xx完成签到,获得积分10
8秒前
xc124完成签到,获得积分10
9秒前
彳亍而行发布了新的文献求助10
9秒前
拓跋凝海完成签到,获得积分10
9秒前
10秒前
XLC发布了新的文献求助10
10秒前
11秒前
核桃应助Nimnse采纳,获得10
15秒前
张可发布了新的文献求助10
15秒前
16秒前
XLC完成签到,获得积分20
17秒前
fwstu发布了新的文献求助30
17秒前
18秒前
19秒前
20秒前
开朗天寿发布了新的文献求助10
21秒前
小眼儿完成签到 ,获得积分10
21秒前
科研通AI2S应助安晗默采纳,获得10
22秒前
Leo_Sun完成签到,获得积分10
23秒前
Yang完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
24秒前
完美世界应助自强不息采纳,获得10
24秒前
品品完成签到 ,获得积分10
24秒前
完美世界应助ZM采纳,获得10
24秒前
25秒前
QL发布了新的文献求助20
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409