Machine learning prediction of delignification and lignin structure regulation of deep eutectic solvents pretreatment processes

木质素 化学 解聚 分散性 主成分分析 化学工程 有机化学 人工智能 计算机科学 工程类
作者
Hanwen Ge,Yaoze Liu,Baoping Zhu,Yang Xu,Rui Zhou,Huanfei Xu,Bin Li
出处
期刊:Industrial Crops and Products [Elsevier BV]
卷期号:203: 117138-117138 被引量:20
标识
DOI:10.1016/j.indcrop.2023.117138
摘要

Prediction of the pretreatment efficiency of lignocellulosic biomass with ternary deep eutectic solvents (DES) containing Lewis acids by machine learning (ML). Principal component analysis, partial least square method, spearman correlation matrix, random forest, extreme gradient boosting and deep neural network were used to elucidate the correlation between 77 variables and the mechanism of lignin depolymerization. The effects of raw material composition, reaction conditions, physicochemical properties of DES and structural parameters in lignin on 9 target variables including β-O-4 bond, β-β bond, β-5 bond, weight average molecular weight, number average molecular weight, polydispersity index, ratio of syringyl units to guaiacyl units, content of phenolic hydroxyl groups and delignification were analyzed. Multivariate analysis showed that temperature, polarity related parameters of HBD and acidity of Lewis acids contributed significantly to the degree of lignin depolymerization. The types and fracture mechanisms of the bonds between different structural units of lignin can be determined by the analysis of structural parameters. XGBoost model has the best performance among all the ML models, and the R square of the test sets for the target variables is above 0.76. Feature importance analysis showed that structural parameters significantly affected the pretreatment effect. The physical and chemical parameters of HBD, such as dipole moment, Log P and surface tension should be paid attention to in the design of DES. The study of the weak intermolecular forces in the lignin and DES systems is beneficial to reveal the mechanism of the pretreatment process. This study provides novel insights into the structural regulation and high-value utilization of lignin in the process of DES pretreatment of lignocellulosic biomass.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研小狗发布了新的文献求助10
3秒前
如意2023发布了新的文献求助10
6秒前
8秒前
14秒前
执着的日记本完成签到 ,获得积分10
15秒前
16秒前
16秒前
西瓜妈妈完成签到,获得积分20
16秒前
17秒前
俏皮白云完成签到 ,获得积分10
18秒前
qyy发布了新的文献求助10
20秒前
坚定自信发布了新的文献求助10
20秒前
21秒前
卜靖荷完成签到,获得积分10
21秒前
西瓜妈妈发布了新的文献求助10
21秒前
21秒前
淡紫浅蓝发布了新的文献求助10
24秒前
24秒前
24秒前
乌梅丸完成签到,获得积分10
25秒前
Ayuyu发布了新的文献求助10
26秒前
科研狗完成签到,获得积分10
28秒前
阅遍SCI完成签到,获得积分10
30秒前
31秒前
情怀应助坚定自信采纳,获得10
31秒前
31秒前
易海之旅发布了新的文献求助10
31秒前
34秒前
汉堡包应助体贴的面包采纳,获得10
36秒前
机灵水卉发布了新的文献求助10
38秒前
坚定自信完成签到,获得积分20
38秒前
淡紫浅蓝完成签到,获得积分10
38秒前
yanGGGGGG完成签到 ,获得积分20
39秒前
英俊的铭应助HtObama采纳,获得10
39秒前
杨蕾完成签到,获得积分10
40秒前
40秒前
DDD发布了新的文献求助10
42秒前
46秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3964797
求助须知:如何正确求助?哪些是违规求助? 3510246
关于积分的说明 11152575
捐赠科研通 3244535
什么是DOI,文献DOI怎么找? 1792423
邀请新用户注册赠送积分活动 873825
科研通“疑难数据库(出版商)”最低求助积分说明 804007