An ensemble deep learning approach for untrained compound fault diagnosis in bearings under unstable conditions

计算机科学 卷积神经网络 分类器(UML) 欧几里德距离 人工智能 模式识别(心理学) 数据挖掘 断层(地质) 稳健性(进化) 生物化学 化学 地震学 基因 地质学
作者
Miao Jiang,Yang Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025907-025907 被引量:3
标识
DOI:10.1088/1361-6501/ad0f6a
摘要

Abstract Based on the dimension invariance property of the data-driven bearing fault diagnosis method, unstable condition data can result in the loss of information and reduced diagnostic accuracy due to inconsistent data dimensions. Furthermore, the fixed parameters of the output layer restrict its ability to accurately diagnose faults beyond the training set, particularly compound faults with limited data. To address these challenges, this study proposes an ensemble deep learning approach for identifying untrained compound faults in bearings operating under non-stationary conditions. Firstly, a signal angular domain processing technique is employed to standardize the dimensionality of the bearing’s state information, effectively mitigating information loss. Secondly, a feature extraction model is established to dynamically capture local microscopic and multilevel features utilizing the adaptability of convolutional neural network (CNN), and it can mine the relevant features of compound faults through the single-fault features. In the verification process, the kmeans algorithm with scalable classification is used to optimize the classifier of CNN. Specifically, the number of cluster centers in kmeans is set to exceed the count of training fault categories. Identification of untrained compound faults is achieved by calculating the Euclidean distances between each feature and the cluster centers, based on the principle of minimum distance. It addresses the challenge of inadequate diagnostic rates for untrained compound faults. The diagnostic outcomes prove that the proposed method has a high diagnostic robustness and generalization ability, which can effectively solve the problem of insufficient fault data and provide a new way of diagnosing untrained compound faults.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的鸡翅完成签到,获得积分10
刚刚
1秒前
小小心愿完成签到,获得积分10
1秒前
爆米花应助hhhhhhan616采纳,获得10
1秒前
哈哈哈哈哈哈完成签到,获得积分20
2秒前
3秒前
3秒前
彭于晏应助maizencrna采纳,获得10
3秒前
KaK完成签到,获得积分10
3秒前
新新新新新发顶刊完成签到 ,获得积分10
4秒前
4秒前
4秒前
小小心愿发布了新的文献求助10
4秒前
HONG完成签到 ,获得积分10
4秒前
火星上雅寒完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
静心完成签到,获得积分10
8秒前
8秒前
天天发布了新的文献求助30
8秒前
孙皓阳发布了新的文献求助10
9秒前
is发布了新的文献求助10
9秒前
9秒前
9秒前
db完成签到,获得积分10
10秒前
天天快乐应助发光采纳,获得10
10秒前
可爱的函函应助Manxi采纳,获得10
10秒前
ned完成签到,获得积分10
12秒前
12秒前
amisomeone发布了新的文献求助10
12秒前
大猪完成签到 ,获得积分10
12秒前
13秒前
lg20010419完成签到,获得积分10
13秒前
14秒前
王多肉完成签到,获得积分10
14秒前
小阳肖恩完成签到 ,获得积分10
14秒前
hsj完成签到,获得积分10
14秒前
桑榆非晚发布了新的文献求助10
14秒前
犹豫战斗机完成签到,获得积分10
14秒前
青馨花语发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789928
求助须知:如何正确求助?哪些是违规求助? 5724842
关于积分的说明 15476047
捐赠科研通 4917723
什么是DOI,文献DOI怎么找? 2647189
邀请新用户注册赠送积分活动 1594798
关于科研通互助平台的介绍 1549295