亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble deep learning approach for untrained compound fault diagnosis in bearings under unstable conditions

计算机科学 卷积神经网络 分类器(UML) 欧几里德距离 人工智能 模式识别(心理学) 数据挖掘 断层(地质) 稳健性(进化) 生物化学 基因 地质学 地震学 化学
作者
Miao Jiang,Yang Xiang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025907-025907 被引量:3
标识
DOI:10.1088/1361-6501/ad0f6a
摘要

Abstract Based on the dimension invariance property of the data-driven bearing fault diagnosis method, unstable condition data can result in the loss of information and reduced diagnostic accuracy due to inconsistent data dimensions. Furthermore, the fixed parameters of the output layer restrict its ability to accurately diagnose faults beyond the training set, particularly compound faults with limited data. To address these challenges, this study proposes an ensemble deep learning approach for identifying untrained compound faults in bearings operating under non-stationary conditions. Firstly, a signal angular domain processing technique is employed to standardize the dimensionality of the bearing’s state information, effectively mitigating information loss. Secondly, a feature extraction model is established to dynamically capture local microscopic and multilevel features utilizing the adaptability of convolutional neural network (CNN), and it can mine the relevant features of compound faults through the single-fault features. In the verification process, the kmeans algorithm with scalable classification is used to optimize the classifier of CNN. Specifically, the number of cluster centers in kmeans is set to exceed the count of training fault categories. Identification of untrained compound faults is achieved by calculating the Euclidean distances between each feature and the cluster centers, based on the principle of minimum distance. It addresses the challenge of inadequate diagnostic rates for untrained compound faults. The diagnostic outcomes prove that the proposed method has a high diagnostic robustness and generalization ability, which can effectively solve the problem of insufficient fault data and provide a new way of diagnosing untrained compound faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦蛤蛤蛤完成签到 ,获得积分10
8秒前
23秒前
上官若男应助安安采纳,获得10
26秒前
neurology发布了新的文献求助10
27秒前
44秒前
酷波er应助super采纳,获得10
44秒前
安安发布了新的文献求助10
47秒前
54秒前
iman完成签到,获得积分10
55秒前
55秒前
yjc666发布了新的文献求助10
1分钟前
super发布了新的文献求助10
1分钟前
1分钟前
trophozoite完成签到 ,获得积分10
1分钟前
yjc666完成签到,获得积分20
1分钟前
古日方原完成签到,获得积分10
1分钟前
顺心醉柳完成签到 ,获得积分10
1分钟前
1分钟前
传奇3应助DX120210165采纳,获得10
1分钟前
123发布了新的文献求助10
1分钟前
科目三应助青栞采纳,获得10
1分钟前
2分钟前
2分钟前
DX120210165发布了新的文献求助10
2分钟前
2分钟前
2分钟前
冷傲的薯片完成签到,获得积分10
3分钟前
3分钟前
Tim888完成签到,获得积分10
3分钟前
ZanE完成签到,获得积分10
3分钟前
3分钟前
3分钟前
青栞完成签到,获得积分10
3分钟前
3分钟前
希望天下0贩的0应助kosangel采纳,获得10
3分钟前
青栞发布了新的文献求助10
3分钟前
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
kosangel发布了新的文献求助10
4分钟前
Tonson应助fly采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476343
求助须知:如何正确求助?哪些是违规求助? 4578021
关于积分的说明 14363359
捐赠科研通 4505924
什么是DOI,文献DOI怎么找? 2468940
邀请新用户注册赠送积分活动 1456521
关于科研通互助平台的介绍 1430207