DSC-Net: A Novel Interactive Two-Stream Network by Combining Transformer and CNN for Ultrasound Image Segmentation

计算机科学 人工智能 卷积神经网络 分割 稳健性(进化) 散斑噪声 计算机视觉 图像分割 图像处理 模式识别(心理学) 斑点图案 图像(数学) 生物化学 化学 基因
作者
Kai Hu,Yadong Zhu,Tianxin Zhou,Yuan Zhang,Chunhong Cao,Fen Xiao,Xieping Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:10
标识
DOI:10.1109/tim.2023.3322993
摘要

Ultrasound imaging is one of the most widely used medical imaging techniques for visualizing human tissue due to its economical, convenient, practical, and safe advantages. Automatic segmentation of regions of interest in ultrasound images is of great significance in improving the clinical efficiency of ultrasound images and the accuracy of disease diagnosis. However, this task has been challenging due to speckle noise, low contrast, and blurred boundaries in ultrasound images. To address these problems, this paper proposes an interactive two-stream network based on detail screening and compensation called DSC-Net for ultrasound image segmentation. Unlike previous ultrasound image segmentation methods, our DSC-Net combines the Transformer and Convolutional Neural Network to perform accurate ultrasound image segmentation. Specifically, DSC-Net utilizes a Transformer Stream to obtain multi-scale detailed features and a Convolutional Neural Network Stream to extract body features with less noise. Then, the body features guide multi-scale detailed features to filter out noise through the Detail Screening Module. The filtered detail features are applied to Detail Compensation Module to supplement rich details for the Convolutional Neural Network Stream. With such interactions, DSC-Net ensures that more noise-free details are extracted. Extensive experiments on three datasets, including two publicly available datasets and one private dataset, demonstrate that the proposed DSC-Net achieves higher performance and superior robustness than state-of-the-art ultrasound image segmentation methods. Our code is publicly available at https://github.com/MLMIP/DSC-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
小杨完成签到 ,获得积分10
6秒前
7秒前
sky发布了新的文献求助20
7秒前
格格完成签到,获得积分10
9秒前
9秒前
9秒前
hhw发布了新的文献求助10
9秒前
领导范儿应助可可可可汁采纳,获得10
10秒前
¥#¥-11发布了新的文献求助10
11秒前
Estrella完成签到,获得积分10
12秒前
14秒前
格格发布了新的文献求助10
14秒前
15秒前
15秒前
Auh完成签到,获得积分10
16秒前
呆萌的鸿煊完成签到,获得积分10
16秒前
ZYB12321发布了新的文献求助10
18秒前
zzzz完成签到,获得积分10
18秒前
18秒前
Ogai完成签到,获得积分10
18秒前
19秒前
19秒前
lw完成签到,获得积分10
20秒前
任浩发布了新的文献求助10
21秒前
万能图书馆应助zzzz采纳,获得10
26秒前
26秒前
27秒前
tjzbw完成签到,获得积分10
28秒前
28秒前
wu关闭了wu文献求助
29秒前
量子星尘发布了新的文献求助10
30秒前
harry发布了新的文献求助10
30秒前
科研通AI5应助841784021采纳,获得10
30秒前
crystalese发布了新的文献求助10
30秒前
jf发布了新的文献求助10
30秒前
31秒前
华仔应助ldmr采纳,获得30
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4313859
求助须知:如何正确求助?哪些是违规求助? 3833410
关于积分的说明 11992854
捐赠科研通 3473551
什么是DOI,文献DOI怎么找? 1904817
邀请新用户注册赠送积分活动 951591
科研通“疑难数据库(出版商)”最低求助积分说明 853147