DSC-Net: A Novel Interactive Two-Stream Network by Combining Transformer and CNN for Ultrasound Image Segmentation

计算机科学 人工智能 卷积神经网络 分割 稳健性(进化) 散斑噪声 计算机视觉 图像分割 图像处理 模式识别(心理学) 斑点图案 图像(数学) 生物化学 化学 基因
作者
Kai Hu,Yadong Zhu,Tianxin Zhou,Yuan Zhang,Chunhong Cao,Fen Xiao,Xieping Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:10
标识
DOI:10.1109/tim.2023.3322993
摘要

Ultrasound imaging is one of the most widely used medical imaging techniques for visualizing human tissue due to its economical, convenient, practical, and safe advantages. Automatic segmentation of regions of interest in ultrasound images is of great significance in improving the clinical efficiency of ultrasound images and the accuracy of disease diagnosis. However, this task has been challenging due to speckle noise, low contrast, and blurred boundaries in ultrasound images. To address these problems, this paper proposes an interactive two-stream network based on detail screening and compensation called DSC-Net for ultrasound image segmentation. Unlike previous ultrasound image segmentation methods, our DSC-Net combines the Transformer and Convolutional Neural Network to perform accurate ultrasound image segmentation. Specifically, DSC-Net utilizes a Transformer Stream to obtain multi-scale detailed features and a Convolutional Neural Network Stream to extract body features with less noise. Then, the body features guide multi-scale detailed features to filter out noise through the Detail Screening Module. The filtered detail features are applied to Detail Compensation Module to supplement rich details for the Convolutional Neural Network Stream. With such interactions, DSC-Net ensures that more noise-free details are extracted. Extensive experiments on three datasets, including two publicly available datasets and one private dataset, demonstrate that the proposed DSC-Net achieves higher performance and superior robustness than state-of-the-art ultrasound image segmentation methods. Our code is publicly available at https://github.com/MLMIP/DSC-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宇发布了新的文献求助10
1秒前
嘎嘎发完成签到,获得积分10
2秒前
4秒前
小蘑菇应助笑点低的以亦采纳,获得10
5秒前
6秒前
lonelymusic完成签到,获得积分10
7秒前
zjy147发布了新的文献求助10
7秒前
8秒前
8秒前
张宇完成签到,获得积分10
8秒前
8秒前
完美世界应助稗子采纳,获得10
9秒前
李春霞发布了新的文献求助10
9秒前
WY发布了新的文献求助10
10秒前
11秒前
zhonglv7应助蜗牛采纳,获得10
11秒前
11秒前
dyyisash发布了新的文献求助50
12秒前
qixiaoqi发布了新的文献求助10
12秒前
酷酷的墨镜完成签到,获得积分10
13秒前
15秒前
fuga发布了新的文献求助10
15秒前
雨上悲发布了新的文献求助10
17秒前
aslink完成签到,获得积分10
17秒前
17秒前
思源应助闪闪小帆采纳,获得10
18秒前
hjs应助曾经的怀亦采纳,获得10
18秒前
完美世界应助曾经的怀亦采纳,获得10
18秒前
Owen应助WY采纳,获得10
19秒前
英俊的铭应助陈涛采纳,获得10
19秒前
平常鸿涛完成签到,获得积分20
20秒前
JW发布了新的文献求助30
21秒前
21秒前
田様应助qixiaoqi采纳,获得10
21秒前
典雅的人生应助baiyi采纳,获得10
22秒前
风中幻梦发布了新的文献求助10
24秒前
24秒前
机智的水风完成签到,获得积分20
24秒前
25秒前
yznfly举报sh求助涉嫌违规
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Psychology and Work Today 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5831926
求助须知:如何正确求助?哪些是违规求助? 6068577
关于积分的说明 15583854
捐赠科研通 4951280
什么是DOI,文献DOI怎么找? 2667889
邀请新用户注册赠送积分活动 1613487
关于科研通互助平台的介绍 1568405