Image semantic segmentation approach based on DeepLabV3 plus network with an attention mechanism

计算机科学 分割 人工智能 特征(语言学) 图像分割 计算复杂性理论 模式识别(心理学) 卷积神经网络 计算机视觉 算法 哲学 语言学
作者
Yanyan Liu,Xiaotian Bai,Jiafei Wang,Guoning Li,Jin Li,Zengming Lv
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:127: 107260-107260 被引量:26
标识
DOI:10.1016/j.engappai.2023.107260
摘要

Image semantic segmentation is a technique that distinguishes different kinds of things in an image by assigning a label to each point in a target category based on its "semantics". The Deeplabv3+ image semantic segmentation method currently in use has high computational complexity and large memory consumption, making it difficult to deploy on embedded platforms with limited computational power. When extracting image feature information, Deeplabv3+ struggles to fully utilize multiscale information. This can result in a loss of detailed information and damage to segmentation accuracy. An improved image semantic segmentation method based on the DeepLabv3+ network is proposed, with the lightweight MobileNetv2 serving as the model's backbone. The ECAnet channel attention mechanism is applied to low-level features, reducing computational complexity and improving target boundary clarity. The polarized self-attention mechanism is introduced after the ASPP module to improve the spatial feature representation of the feature map. Validated on the VOC2012 dataset, the experimental results indicate that the improved model achieved an MloU of 69.29% and a mAP of 80.41%, which can predict finer semantic segmentation results and effectively optimize the model complexity and segmentation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
gggggd完成签到,获得积分10
2秒前
李健应助不想起名字采纳,获得10
2秒前
苗条白枫完成签到 ,获得积分10
3秒前
科研通AI5应助晓梦采纳,获得10
3秒前
LZY完成签到,获得积分10
4秒前
5秒前
英姑应助88采纳,获得10
5秒前
所所应助遮宁采纳,获得10
5秒前
球球尧伞耳完成签到,获得积分10
6秒前
烟喜完成签到 ,获得积分10
6秒前
7秒前
飘逸灰狼发布了新的文献求助10
7秒前
张菁完成签到,获得积分10
7秒前
瘦瘦白薇完成签到 ,获得积分10
8秒前
慕青应助精明曼荷采纳,获得10
8秒前
deng203发布了新的文献求助10
8秒前
GJL完成签到,获得积分10
9秒前
滴滴答答完成签到 ,获得积分10
10秒前
端庄的蜗牛完成签到,获得积分10
10秒前
冰魂应助yyy采纳,获得10
13秒前
pp发布了新的文献求助10
13秒前
Wy应助deng203采纳,获得10
14秒前
肖的花园完成签到 ,获得积分10
14秒前
15秒前
16秒前
朝阳完成签到 ,获得积分10
17秒前
欣喜大地发布了新的文献求助10
19秒前
Ava应助有魅力的梦秋采纳,获得10
19秒前
小田田发布了新的文献求助10
20秒前
abc123完成签到,获得积分10
20秒前
FANG应助Ettrickfield采纳,获得20
21秒前
lanheqingniao完成签到,获得积分10
22秒前
mz完成签到 ,获得积分10
23秒前
善学以致用应助aaaaarfv采纳,获得10
23秒前
Hello应助deng203采纳,获得10
25秒前
25秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801363
求助须知:如何正确求助?哪些是违规求助? 3347010
关于积分的说明 10331354
捐赠科研通 3063280
什么是DOI,文献DOI怎么找? 1681497
邀请新用户注册赠送积分活动 807616
科研通“疑难数据库(出版商)”最低求助积分说明 763790