Deep autoencoder-based behavioral pattern recognition outperforms standard statistical methods in high-dimensional zebrafish studies

斑马鱼 自编码 人工智能 计算机科学 深度学习 机器学习 模式识别(心理学) 生物 生物化学 基因
作者
Adrian J. Green,Lisa Truong,Preethi Thunga,Connor Leong,Melody Hancock,Robert L. Tanguay,David M. Reif
标识
DOI:10.1101/2023.09.13.557544
摘要

Abstract Zebrafish have become an essential tool in screening for developmental neurotoxic chemicals and their molecular targets. The success of zebrafish as a screening model is partially due to their physical characteristics including their relatively simple nervous system, rapid development, experimental tractability, and genetic diversity combined with technical advantages that allow for the generation of large amounts of high-dimensional behavioral data. These data are complex and require advanced machine learning and statistical techniques to comprehensively analyze and capture spatiotemporal responses. To accomplish this goal, we have trained semi-supervised deep autoencoders using behavior data from unexposed larval zebrafish to extract quintessential “normal” behavior. Following training, our network was evaluated using data from larvae shown to have significant changes in behavior (using a traditional statistical framework) following exposure to toxicants that include nanomaterials, aromatics, per- and polyfluoroalkyl substances (PFAS), and other environmental contaminants. Further, our model identified new chemicals (Perfluoro-n-octadecanoic acid, 8-Chloroperfluorooctylphosphonic acid, and Nonafluoropentanamide) as capable of inducing abnormal behavior at multiple chemical-concentrations pairs not captured using distance moved alone. Leveraging this deep learning model will allow for better characterization of the different exposure-induced behavioral phenotypes, facilitate improved genetic and neurobehavioral analysis in mechanistic determination studies and provide a robust framework for analyzing complex behaviors found in higher-order model systems. Author Summary We demonstrate that a deep autoencoder using raw behavioral tracking data from zebrafish toxicity screens outperforms conventional statistical methods, resulting in a comprehensive evaluation of behavioral data. Our models can accurately distinguish between normal and abnormal behavior with near-complete overlap with existing statistical approaches, with many chemicals detectable at lower concentrations than with conventional statistical tests; this is a crucial finding for the protection of public health. Our deep learning models enable the identification of new substances capable of inducing aberrant behavior, and we generated new data to demonstrate the reproducibility of these results. Thus, neurodevelopmentally active chemicals identified by our deep autoencoder models may represent previously undetectable signals of subtle individual response differences. Our method elegantly accounts for the high degree of behavioral variability associated with the genetic diversity found in a highly outbred population, as is typical for zebrafish research, thereby making it applicable to multiple laboratories. Utilizing the vast quantities of control data generated during high-throughput screening is one of the most innovative aspects of this study and to our knowledge is the first study to explicitly develop a deep autoencoder model for anomaly detection in large-scale toxicological behavior studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
苏七完成签到,获得积分10
刚刚
Dory发布了新的文献求助10
1秒前
1秒前
ll发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
肖航子完成签到,获得积分10
2秒前
自由的含双完成签到,获得积分10
2秒前
shu发布了新的文献求助10
2秒前
2秒前
3秒前
12完成签到 ,获得积分10
3秒前
哒哒发布了新的文献求助10
3秒前
li发布了新的文献求助10
3秒前
4秒前
4秒前
hh哈哈完成签到,获得积分10
4秒前
诚心的冷菱完成签到,获得积分10
4秒前
lucky完成签到,获得积分10
5秒前
5秒前
dan发布了新的文献求助10
5秒前
林北发布了新的文献求助10
5秒前
Dreamhappy发布了新的文献求助10
5秒前
淡然的萝完成签到,获得积分10
6秒前
6秒前
南敏株发布了新的文献求助10
6秒前
Eliauk完成签到,获得积分10
6秒前
博士僧发布了新的文献求助10
7秒前
Amanda柏完成签到,获得积分10
7秒前
虚影发布了新的文献求助10
7秒前
小番茄完成签到 ,获得积分10
8秒前
guozizi发布了新的文献求助20
8秒前
巴拉发布了新的文献求助10
8秒前
酷炫的鸭子完成签到,获得积分20
8秒前
CodeCraft应助小吴同志采纳,获得10
9秒前
wang完成签到,获得积分20
10秒前
WN发布了新的文献求助10
10秒前
12秒前
烟花应助臻灏采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544876
求助须知:如何正确求助?哪些是违规求助? 4630647
关于积分的说明 14617542
捐赠科研通 4572275
什么是DOI,文献DOI怎么找? 2506774
邀请新用户注册赠送积分活动 1483805
关于科研通互助平台的介绍 1455228