Geological Hazard Identification and Susceptibility Assessment Based on MT-InSAR

地质灾害 地质学 山崩 干涉合成孔径雷达 随机森林 采矿工程 自然灾害 北京 合成孔径雷达 遥感 地震学 地理 人工智能 计算机科学 海洋学 考古 中国
作者
Zhaowei Lu,Honglei Yang,Wei Sheng Zeng,Peng Liu,Yuedong Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (22): 5316-5316 被引量:3
标识
DOI:10.3390/rs15225316
摘要

Geological hazards often occur in mountainous areas and are sudden and hidden, so it is important to identify and assess geological hazards. In this paper, the western mountainous area of Beijing was selected as the study area. We conducted research on landslides, collapses, and unstable slopes in the study area. The surface deformation of the study area was monitored by multi-temporal interferometric synthetic aperture radar (MT-InSAR), using a combination of multi-looking point selection and permanent scatterer (PS) point selection methods. Random forest (RF), support vector machine (SVM), convolutional neural network (CNN), and recurrent neural network (RNN) models were selected for the assessment of geological hazard susceptibility. Sixteen geological hazard-influencing factors were collected, and their information values were calculated using their features. Multicollinearity analysis with the relief-F method was used to calculate the correlation and importance of the factors for factor selection. The results show that the deformation rate along the line-of-sight (LOS) direction is between −44 mm/year and 28 mm/year. A total of 60 geological hazards were identified by combining surface deformation with optical imagery and other data, including 7 collapses, 25 unstable slopes, and 28 landslides. Forty-eight of the identified geological hazards are not recorded in the Beijing geological hazards list. The most effective model in the study area was RF. The percentage of geological hazard susceptibility zoning in the study area is as follows: very low susceptibility 27.40%, low susceptibility 28.06%, moderate susceptibility 21.19%, high susceptibility 13.80%, very high susceptibility 9.57%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助一个小胖墩采纳,获得10
刚刚
carpybala发布了新的文献求助10
刚刚
山河发布了新的文献求助10
1秒前
林夏发布了新的文献求助10
1秒前
礼岁岁发布了新的文献求助10
3秒前
kk完成签到,获得积分10
3秒前
Lucas应助nn采纳,获得10
3秒前
PINKRAY0417关注了科研通微信公众号
4秒前
4秒前
Lucas应助YYYY采纳,获得30
5秒前
6秒前
彩色靖儿发布了新的文献求助10
6秒前
carpybala完成签到,获得积分10
7秒前
哈喽酷狗发布了新的文献求助30
7秒前
7秒前
洁净的向南完成签到 ,获得积分10
7秒前
8秒前
Owen应助毛毛采纳,获得10
8秒前
9秒前
科研通AI5应助过儿采纳,获得30
10秒前
卡机了发布了新的文献求助10
11秒前
动漫大师发布了新的文献求助30
11秒前
淡然宛凝发布了新的文献求助10
13秒前
淡然宛凝发布了新的文献求助10
13秒前
天天快乐应助pony采纳,获得10
14秒前
11111完成签到 ,获得积分10
15秒前
penghui完成签到,获得积分10
15秒前
隐形曼青应助.X.采纳,获得10
17秒前
18秒前
斯文败类应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
19秒前
鼠小姐应助科研通管家采纳,获得100
19秒前
充电宝应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
23秒前
21克发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807517
求助须知:如何正确求助?哪些是违规求助? 3352243
关于积分的说明 10358183
捐赠科研通 3068352
什么是DOI,文献DOI怎么找? 1684895
邀请新用户注册赠送积分活动 810113
科研通“疑难数据库(出版商)”最低求助积分说明 765859