Artificial intelligence for image analysis in total hip and total knee arthroplasty

医学 射线照相术 植入 关节置换术 全髋关节置换术 口腔正畸科 外科
作者
B Gurung,Perry Liu,Peter Harris,Amit Sagi,Richard E. Field,David H. Sochart,Keith Tucker,Vipin Asopa
出处
期刊:The bone & joint journal [British Editorial Society of Bone & Joint Surgery]
卷期号:104-B (8): 929-937 被引量:32
标识
DOI:10.1302/0301-620x.104b8.bjj-2022-0120.r2
摘要

Aims Total hip arthroplasty (THA) and total knee arthroplasty (TKA) are common orthopaedic procedures requiring postoperative radiographs to confirm implant positioning and identify complications. Artificial intelligence (AI)-based image analysis has the potential to automate this postoperative surveillance. The aim of this study was to prepare a scoping review to investigate how AI is being used in the analysis of radiographs following THA and TKA, and how accurate these tools are. Methods The Embase, MEDLINE, and PubMed libraries were systematically searched to identify relevant articles. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews and Arksey and O’Malley framework were followed. Study quality was assessed using a modified Methodological Index for Non-Randomized Studies tool. AI performance was reported using either the area under the curve (AUC) or accuracy. Results Of the 455 studies identified, only 12 were suitable for inclusion. Nine reported implant identification and three described predicting risk of implant failure. Of the 12, three studies compared AI performance with orthopaedic surgeons. AI-based implant identification achieved AUC 0.992 to 1, and most algorithms reported an accuracy > 90%, using 550 to 320,000 training radiographs. AI prediction of dislocation risk post-THA, determined after five-year follow-up, was satisfactory (AUC 76.67; 8,500 training radiographs). Diagnosis of hip implant loosening was good (accuracy 88.3%; 420 training radiographs) and measurement of postoperative acetabular angles was comparable to humans (mean absolute difference 1.35° to 1.39°). However, 11 of the 12 studies had several methodological limitations introducing a high risk of bias. None of the studies were externally validated. Conclusion These studies show that AI is promising. While it already has the ability to analyze images with significant precision, there is currently insufficient high-level evidence to support its widespread clinical use. Further research to design robust studies that follow standard reporting guidelines should be encouraged to develop AI models that could be easily translated into real-world conditions. Cite this article: Bone Joint J 2022;104-B(8):929–937.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lan完成签到 ,获得积分10
1秒前
1秒前
cici发布了新的文献求助10
2秒前
思源应助单纯的手机采纳,获得10
2秒前
2秒前
Wang发布了新的文献求助10
3秒前
hhh完成签到,获得积分10
3秒前
Jasper应助吃水果的老虎采纳,获得10
3秒前
dox应助GGbomd采纳,获得10
3秒前
yu完成签到,获得积分10
4秒前
4秒前
ppprotein发布了新的文献求助10
7秒前
大能猫完成签到 ,获得积分10
8秒前
Jasper应助凯瑟琳采纳,获得10
8秒前
文娟完成签到,获得积分10
8秒前
dox应助xiaocui采纳,获得10
8秒前
科研通AI5应助Pinocchior采纳,获得10
9秒前
陈孟发布了新的文献求助10
11秒前
12秒前
cici完成签到,获得积分10
14秒前
14秒前
15秒前
星辰完成签到 ,获得积分10
16秒前
乘风破浪完成签到,获得积分10
16秒前
盛清让完成签到,获得积分10
16秒前
Jason完成签到,获得积分10
17秒前
17秒前
危机的娩发布了新的文献求助10
21秒前
凯瑟琳发布了新的文献求助10
22秒前
23秒前
Zeal发布了新的文献求助10
23秒前
科研通AI5应助科研小菜鸟i采纳,获得10
23秒前
ranran发布了新的文献求助20
24秒前
偷喝汽水完成签到,获得积分10
24秒前
24秒前
25秒前
哈哈哈完成签到,获得积分10
25秒前
27秒前
大Doctor陈发布了新的文献求助10
27秒前
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841843
求助须知:如何正确求助?哪些是违规求助? 3383892
关于积分的说明 10531716
捐赠科研通 3104036
什么是DOI,文献DOI怎么找? 1709483
邀请新用户注册赠送积分活动 823291
科研通“疑难数据库(出版商)”最低求助积分说明 773873