Medical image fusion based on extended difference-of-Gaussians and edge-preserving

计算机科学 GSM演进的增强数据速率 能量(信号处理) 人工智能 图像(数学) 融合规则 融合 图像融合 计算机视觉 滤波器(信号处理) 突出 模式识别(心理学) 数学 语言学 哲学 统计
作者
Yuchan Jie,Xiaosong Li,Mingyi wang,Fuqiang Zhou,Haishu Tan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120301-120301 被引量:26
标识
DOI:10.1016/j.eswa.2023.120301
摘要

Multimodal medical image fusion extracts useful information from different modal medical images and integrates them into one image for a comprehensive and objective lesion description. However, existing methods ignore the simultaneous retention of significant edge and energy information that reflect lesion characteristics in medical images; this affects the application value of medical image fusion in computer aided diagnosis. This paper proposes a novel medical image fusion scheme based on extended difference-of-Gaussians (XDoG) and edge-preserving. A simple yet effective energy-based scheme was developed to generate the fused energy layer, which helped preserve energy. Moreover, the averaging filter was used to generate the detail layers of source images. The fusion of detail layers was considered the combination of significant and non-significant edge information. A rule of the detail layer with a salient edge based on edge extraction operator XDoG was proposed to efficiently detect the salient structure of the significant edges, and a spatial frequency energy operator was developed to detect the gradient and energy of non-significant information. The fused result could be reconstructed by synthesizing the fused energy layer and details of significant and non-significant edges. Experiments demonstrated that the proposed approach outperforms some advanced fusion methods in terms of subjective and objective assessment. The code of this paper is available at https://github.com/JEI981214/FGF-and-XDoG-based.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助rrjl采纳,获得10
刚刚
丘比特应助ga采纳,获得10
刚刚
刚刚
研究僧发布了新的文献求助10
1秒前
最佳发布了新的文献求助10
2秒前
香蕉幻桃发布了新的文献求助10
3秒前
呢喃发布了新的文献求助10
4秒前
6秒前
惠惠不会发布了新的文献求助10
7秒前
Jacky完成签到,获得积分10
7秒前
研友_VZG7GZ应助七七采纳,获得10
7秒前
israr完成签到,获得积分10
9秒前
汉堡包应助keyantong采纳,获得10
10秒前
10秒前
酷酷的穆完成签到,获得积分10
10秒前
11秒前
牧歌完成签到,获得积分10
11秒前
热情菠萝完成签到 ,获得积分10
14秒前
14秒前
ZDS发布了新的文献求助10
14秒前
15秒前
体贴成危发布了新的文献求助10
16秒前
chenjzhuc应助xueshanfeihu采纳,获得20
18秒前
18秒前
研究僧完成签到,获得积分20
18秒前
rrjl发布了新的文献求助10
18秒前
19秒前
充电宝应助吃大鱼的虾米采纳,获得10
20秒前
21秒前
李健的小迷弟应助wade2016采纳,获得10
24秒前
JamesPei应助非而者厚采纳,获得10
24秒前
忧郁的踏歌关注了科研通微信公众号
24秒前
七七发布了新的文献求助10
25秒前
galaxy完成签到 ,获得积分10
25秒前
26秒前
莎莎完成签到,获得积分10
26秒前
27秒前
shenl完成签到,获得积分10
30秒前
30秒前
31秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
A warm-up performed with proper-weight sandbags on the leg improves the speed and RPE performance of 100 m sprint in collegiate male sprinters 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826843
求助须知:如何正确求助?哪些是违规求助? 3369113
关于积分的说明 10454281
捐赠科研通 3088663
什么是DOI,文献DOI怎么找? 1699351
邀请新用户注册赠送积分活动 817289
科研通“疑难数据库(出版商)”最低求助积分说明 770157