A New Context-Aware Framework for Defending Against Adversarial Attacks in Hyperspectral Image Classification

计算机科学 稳健性(进化) 对抗制 人工智能 高光谱成像 深度学习 上下文图像分类 背景(考古学) 机器学习 模式识别(心理学) 像素 图像(数学) 古生物学 基因 生物 化学 生物化学
作者
Bing Tu,Wangquan He,Qianming Li,Yishu Peng,Antonio Plaza
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:5
标识
DOI:10.1109/tgrs.2023.3250450
摘要

Deep neural networks play a significant role in hyperspectral image (HSI) processing, yet they can be easily fooled when trained with adversarial samples (generated by adding tiny perturbations to clean samples). These perturbations are invisible to the human eye, but can easily lead to misclassification by the deep learning model. Recent research on defense against adversarial samples in HSI classification has improved the robustness of deep networks by exploiting global contextual information. However, available methods do not distinguish between different classes of contextual information, which makes the global context unreliable and increases the success rate of attacks. To solve this problem, we propose a robust context-aware network able to defend against adversarial samples in HSI classification. The proposed model generates a global contextual representation by aggregating the features learned via dilated convolution, and then explicitly models intraclass and interclass contextual information by constructing a class context-aware learning module (including affinity loss) to further refine the global context. The module helps pixels obtain more reliable long-range dependencies and improves the overall robustness of the model against adversarial attacks. Experiments on several benchmark HSI datasets demonstrate that the proposed method is more robust and exhibits better generalization than other advanced techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助12采纳,获得10
刚刚
威武问枫完成签到,获得积分20
1秒前
1秒前
涵泽发布了新的文献求助10
1秒前
2秒前
半透明发布了新的文献求助10
2秒前
奔赴时间尽头的流萤完成签到 ,获得积分10
3秒前
18746005898完成签到 ,获得积分10
4秒前
坚强的元瑶完成签到,获得积分10
4秒前
直率的宛海完成签到,获得积分10
4秒前
5秒前
5秒前
Jalynn2044完成签到 ,获得积分10
6秒前
ekdjk发布了新的文献求助10
7秒前
fan完成签到,获得积分10
8秒前
我和狂三贴贴完成签到,获得积分10
9秒前
Bin_Liu发布了新的文献求助10
11秒前
就叫柠檬吧应助橘如采纳,获得10
11秒前
11秒前
12秒前
13秒前
科研通AI5应助半透明采纳,获得10
13秒前
CodeCraft应助wangjie采纳,获得10
14秒前
JamesPei应助小医僧采纳,获得10
15秒前
lucky完成签到,获得积分10
15秒前
evelyn完成签到 ,获得积分10
16秒前
研友_VZG7GZ应助MeSs采纳,获得10
16秒前
胡头虎脑完成签到 ,获得积分10
17秒前
潇湘完成签到 ,获得积分10
19秒前
22秒前
周周完成签到 ,获得积分10
22秒前
海鲜完成签到,获得积分10
22秒前
上官若男应助哈哈哈采纳,获得10
22秒前
空劳牵挂完成签到,获得积分10
23秒前
23秒前
hi派大星完成签到,获得积分10
23秒前
23秒前
夜曦完成签到 ,获得积分10
24秒前
tianmengkui完成签到,获得积分10
24秒前
俏皮金毛发布了新的文献求助30
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770