氧化还原
原位
材料科学
还原(数学)
瞬态(计算机编程)
对偶(语法数字)
光催化
催化作用
吸收光谱法
吸收(声学)
超快激光光谱学
谱线
光化学
分析化学(期刊)
化学工程
环境化学
化学
物理
有机化学
光学
艺术
复合材料
工程类
文学类
天文
冶金
操作系统
激光器
计算机科学
数学
几何学
作者
Ling Sun,Ziqing Zhang,Ji Bian,Fu‐Quan Bai,Hengwei Su,Zhijun Li,Jijia Xie,Rongping Xu,Jianhui Sun,Linlu Bai,Cailing Chen,Yu Han,Junwang Tang,Liqiang Jing
标识
DOI:10.1002/adma.202300064
摘要
Abstract Solar‐driven CO 2 reduction by water with a Z‐scheme heterojunction affords an avenue to access energy storage and to alleviate greenhouse gas (GHG) emissions, yet the separation of charge carriers and the integrative regulation of water oxidation and CO 2 activation sites remain challenging. Here, a BiVO 4 /g‐C 3 N 4 (BVO/CN) Z‐scheme heterojunction as such a prototype is constructed by spatially separated dual sites with CoO x clusters and imidazolium ionic liquids (IL) toward CO 2 photoreduction. The optimized CoO x ‐BVO/CN‐IL delivers an ≈80‐fold CO production rate without H 2 evolution compared with urea‐C 3 N 4 counterpart, together with nearly stoichiometric O 2 gas produced. Experimental results and DFT calculations unveil the cascade Z‐scheme charge transfer and subsequently the prominent redox co‐catalysis by CoO x and IL for holes‐H 2 O oxidation and electrons‐CO 2 reduction, respectively. Moreover, in situ µs‐transient absorption spectra clearly show the function of each cocatalyst and quantitatively reveal that the resulting CoO x ‐BVO/CN‐IL reaches up to the electron transfer efficiency of 36.4% for CO 2 reduction, far beyond those for BVO/CN (4.0%) and urea‐CN (0.8%), underlining an exceptional synergy of dual reaction sites engineering. This work provides deep insights and guidelines for the rational design of highly efficient Z‐scheme heterojunctions with precise redox catalytic sites toward solar fuel production.
科研通智能强力驱动
Strongly Powered by AbleSci AI