作者
Yinghong Zhu,Xingxing Jian,Shuping Chen,Gang An,Duanfeng Jiang,Qin Yang,Jingyu Zhang,Jian Hu,Yi Qiu,Xiangling Feng,Jiaojiao Guo,Xun Chen,Zhengjiang Li,Ruiqi Zhou,Cong Hu,Nihan He,Fangming Shi,Siqing Huang,Hongfang Liu,Xin Li,Lu Xie,Yan Zhu,Lia Zhao,Yichuan Jiang,Li J,Jinuo Wang,Lugui Qiu,Xiang Chen,Jia Wang,Yanjuan He,Wen Zhou
摘要
The gut microbiome has been found to play a crucial role in the treatment of multiple myeloma (MM), which is still considered incurable due to drug resistance. In previous studies, we demonstrated that intestinal nitrogen-recycling bacteria are enriched in patients with MM. However, their role in MM relapse remains unclear. This study highlights the specific enrichment of Citrobacter freundii (C. freundii) in patients with relapsed MM. Through fecal microbial transplantation experiments, we demonstrate that C. freundii plays a critical role in inducing drug resistance in MM by increasing levels of circulating ammonium. The ammonium enters MM cells through the transmembrane channel protein SLC12A2, promoting chromosomal instability and drug resistance by stabilizing the NEK2 protein. We show that furosemide sodium, a loop diuretic, downregulates SLC12A2, thereby inhibiting ammonium uptake by MM cells and improving progression-free survival and curative effect scores. These findings provide new therapeutic targets and strategies for the intervention of MM progression and drug resistance.