清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dictionary Learning-Structured Reinforcement Learning With Adaptive-Sparsity Regularizer

强化学习 计算机科学 人工智能 适应性学习 机器学习 模式识别(心理学)
作者
Zhenni Li,Jianhao Tang,Haoli Zhao,Ci Chen,Shengli Xie
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:60 (2): 1753-1769 被引量:2
标识
DOI:10.1109/taes.2023.3342794
摘要

Deep reinforcement learning (DRL) has been applied to satellite navigation and positioning applications. Its performance relies heavily on the function-approximation capability of deep neural networks. However, existing DRL models suffer from catastrophic interference, resulting in inaccurate function approximation. The sparse-coding-based DRL is an effective method to mitigating this interference, but existing methods involve the following two challenging issues: first, the value function estimation network suffers from instability problems with gradient backpropagation, including gradient explosion and gradient vanishing, second, existing methods are limited to using hand-crafted sparse regularizers that produce only static sparsity, which may be difficult to apply in various dynamic reinforcement learning (RL) environments. In this article, we propose a novel dictionary learning (DL)-structured RL model with adaptive-sparsity regularizer (ASR) that alleviates the catastrophic interference and enables accurate value function approximation, thereby improving the RL performance. To alleviate the interference and avoid the instability problems in RL, a feedforward DL-structured RL model is constructed to predict the value function without the need for gradient backpropagation. To learn data-driven sparse representations with adaptive sparsity, we propose to use the learnable sparse regularizer ASR in the model, where the key hyperparameters of ASR can be trained to be adaptive to variable RL environments. To optimize the model efficiently, the model parameters are first pretrained in the pretraining stage, with only the value weights used for value function approximation needing to be fine-tuned for actual RL applications in the control training stage. Our comparative experiments in benchmark environments demonstrate that the proposed method can outperform existing state-of-the-art sparse-coding-based RL algorithms. In terms of accumulated rewards (used to measure the quality of the learned policy), the improvement was over 63% in Cart Pole environment and nearly 10% for Puddle World. Furthermore, the proposed algorithm can maintain its relatively high performance in the presence of noise up to 20 dB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮云完成签到 ,获得积分10
13秒前
juan完成签到 ,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
46秒前
ning_qing完成签到 ,获得积分10
1分钟前
mzhang2完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
王淳完成签到 ,获得积分10
1分钟前
神外魔法师完成签到,获得积分10
1分钟前
5433完成签到 ,获得积分10
2分钟前
牛马完成签到 ,获得积分10
2分钟前
紫熊完成签到,获得积分10
4分钟前
CodeCraft应助快乐小狗采纳,获得10
4分钟前
白菜完成签到 ,获得积分10
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
满意的伊完成签到,获得积分10
5分钟前
宇文非笑完成签到 ,获得积分10
6分钟前
bc应助科研通管家采纳,获得30
6分钟前
bc应助科研通管家采纳,获得30
6分钟前
bc应助科研通管家采纳,获得30
6分钟前
bc应助科研通管家采纳,获得30
6分钟前
知行者完成签到 ,获得积分10
8分钟前
8分钟前
快乐小狗发布了新的文献求助10
8分钟前
桐桐应助快乐小狗采纳,获得10
8分钟前
CherylZhao完成签到,获得积分10
8分钟前
bc应助科研通管家采纳,获得30
8分钟前
ZJakariae应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
万能图书馆应助Tiger-Cheng采纳,获得20
8分钟前
9分钟前
bc应助科研通管家采纳,获得30
10分钟前
bc应助科研通管家采纳,获得30
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
橘子味的北冰洋完成签到 ,获得积分10
10分钟前
幻梦如歌完成签到,获得积分10
10分钟前
幻梦如歌发布了新的文献求助10
10分钟前
Georgechan完成签到,获得积分10
10分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815818
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402318
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767728