Harnessing Green Revolution genes to optimize tomato production efficiency for vertical farming

生产(经济) 绿色革命 农业 生物技术 生物 经济 生态学 宏观经济学
作者
Xuchen Yu,ZhengLong Li,Yongfang Yang,Shujia Li,Y. M. Lu,Yang Li,Xinyu Zhang,Fan Chen,Xu Cao
出处
期刊:Journal of Integrative Plant Biology [Wiley]
标识
DOI:10.1111/jipb.13927
摘要

ABSTRACT Vertical farming offers significant potential to tackle global challenges like urbanization, food security, and climate change. However, its widespread adoption is hindered by high costs, substantial energy demands, and thus low production efficiency. The limited range of economically viable crops further compounds these challenges. Beyond advancing infrastructure, rapidly developing crop cultivars tailored for vertical farming (VF) are essential to enhancing production efficiency. The gibberellin biosynthesis genes GA20‐oxidase fueled the Green Revolution in cereals, while the anti‐florigen genes SELF‐PRUNING ( SP ) and SELF‐PRUNING 5G ( SP5G ) revolutionized tomato production. Here, we engineer tomato germplasm optimized for VF by leveraging genome editing to integrate Green Revolution gene homologs and anti‐florigen genes. Knocking out the tomato SlGA20ox1 gene, but not SlGA20ox2 , results in a promising VF‐suitable plant architecture featuring short stems and a compact canopy. When cultivated in a commercial vertical farm with multi‐layered, LED‐equipped automated hydroponic growth systems, slga20ox1 mutants saved space occupation by 75%, achieving a 38%–69% fruit yield increase with higher planting density, less space occupation, and lower lighting power consumption. Stacking SlGA20ox1 with SP and SP5G genes created a more compact plant architecture with accelerated flowering and synchronized fruit ripening. In commercial vertical farms, the sp sp5g slga20ox1 triple mutant reduced space occupation by 85%, shortened the harvest cycle by 16% and increased effective yield by 180%, significantly enhancing production efficiency. Our study demonstrates the potential of integrating agriculture practice‐validated genes to rapidly develop tomato cultivars tailored for VF, providing a proof‐of‐concept for leveraging genome editing to boost production efficiency in VF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
LY发布了新的文献求助10
2秒前
wlq发布了新的文献求助10
2秒前
789关闭了789文献求助
3秒前
3秒前
zzz发布了新的文献求助10
3秒前
3秒前
认真初之发布了新的文献求助10
3秒前
无私的八宝粥完成签到,获得积分10
4秒前
机灵水卉发布了新的文献求助10
4秒前
daladala发布了新的文献求助10
4秒前
天天快乐应助77采纳,获得10
4秒前
in2you完成签到,获得积分10
5秒前
金金金完成签到,获得积分10
5秒前
j222发布了新的文献求助10
5秒前
香蕉觅云应助呵呵采纳,获得10
5秒前
土豆侠发布了新的文献求助10
5秒前
5秒前
6秒前
lh发布了新的文献求助10
6秒前
7秒前
DEYING完成签到,获得积分10
8秒前
倩倩应助tianhaizhi采纳,获得10
8秒前
可爱的函函应助啊汪~采纳,获得10
8秒前
在水一方应助负责的方盒采纳,获得10
8秒前
归尘发布了新的文献求助30
8秒前
8秒前
领导范儿应助十一十八采纳,获得10
9秒前
杨sir应助番茄炒鸡蛋采纳,获得10
9秒前
睿rrrr完成签到 ,获得积分20
9秒前
9秒前
akamanuo发布了新的文献求助10
10秒前
in2you发布了新的文献求助10
10秒前
橘子的海给橘子的海的求助进行了留言
11秒前
11秒前
12秒前
zys完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4283199
求助须知:如何正确求助?哪些是违规求助? 3811116
关于积分的说明 11938256
捐赠科研通 3457565
什么是DOI,文献DOI怎么找? 1896217
邀请新用户注册赠送积分活动 945066
科研通“疑难数据库(出版商)”最低求助积分说明 848801