Research on multimodal techniques for arc detection in railway systems with limited data

计算机科学 弧(几何) 数据科学 系统工程 工程类 机械工程
作者
Jingke Yan,Cheng Yao,Fan Zhang,Mudi Li,Ning Zhou,Bo Jin,Hui Wang,Haonan Yang,Weihua Zhang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:47
标识
DOI:10.1177/14759217251336797
摘要

The pantograph–catenary system is a critical component of railway vehicles, and its performance directly affects the quality of current collection. Accurately measuring the arcing rate is essential for monitoring the system’s condition and ensuring safe operation. However, traditional arc detection methods are prone to increased false detection rates and reduced measurement accuracy in complex railway environments due to the diversity of arc sizes and shapes, environmental interference, instability in current collection, and power fluctuations. While deep learning-based methods can effectively address environmental interference, obtaining sufficient labeled training data is challenging because arc events occur infrequently. Moreover, a large number of unlabeled images of pantograph–catenary contacts cannot be directly utilized due to the lack of annotations. To solve these issues, a novel arc detection method is proposed: a multimodal arc detection network based on denoising diffusion probabilistic models (DDPMs-MILNet). First, a DDPM is pretrained using a large set of unlabeled images to acquire advanced image features. This model serves as a feature extractor, and a hierarchical variation semantic decoder is fine-tuned, thereby improving performance under small-sample conditions and reducing dependence on extensive labeled datasets. Building on this, an audiovisual semantic decoder is designed to incorporate audio signals as semantic cues, providing additional modality information for visual features. This approach not only reduces the model’s reliance on visual information but also enables it to locate the visual target of the arc even when the object is not simultaneously seen and heard, further alleviating the challenges posed by limited sample sizes. Experimental results demonstrate that DDPM-MILNet achieves excellent detection performance with minimal data in complex railway environments, indicating significant application potential, particularly in the state monitoring and anomaly detection of railway systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助大河细流采纳,获得10
刚刚
1秒前
陈塘关守将完成签到,获得积分10
1秒前
肠脑轴生物狗完成签到,获得积分10
2秒前
2秒前
超级全通发布了新的文献求助30
2秒前
科研通AI2S应助ysd采纳,获得10
2秒前
rrr发布了新的文献求助10
3秒前
青春发布了新的文献求助10
3秒前
天天快乐应助健壮听露采纳,获得10
4秒前
junzpeng发布了新的文献求助10
4秒前
晒黑的雪碧完成签到,获得积分10
4秒前
5秒前
nina发布了新的文献求助10
5秒前
5秒前
有颗柚子发布了新的文献求助10
6秒前
情怀应助Gnor采纳,获得10
6秒前
小荷才露尖尖角完成签到,获得积分10
6秒前
千葉发布了新的文献求助10
7秒前
共享精神应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
Jared应助科研通管家采纳,获得20
9秒前
雪域应助科研通管家采纳,获得30
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
共享精神应助Komorebi采纳,获得10
9秒前
9秒前
丘比特应助大河细流采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
Jared应助科研通管家采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728534
求助须知:如何正确求助?哪些是违规求助? 5313250
关于积分的说明 15314452
捐赠科研通 4875726
什么是DOI,文献DOI怎么找? 2618947
邀请新用户注册赠送积分活动 1568530
关于科研通互助平台的介绍 1525171