Unifying Convolution and Transformer for Efficient Concealed Object Detection in Passive Millimeter-Wave Images

计算机科学 人工智能 卷积神经网络 探测器 目标检测 变压器 特征提取 计算机视觉 深度学习 模式识别(心理学) 电信 电压 工程类 电气工程
作者
Hao Yang,Zihan Yang,Anyong Hu,Che Liu,Tie Jun Cui,Jungang Miao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3872-3887 被引量:19
标识
DOI:10.1109/tcsvt.2023.3234311
摘要

Passive millimeter-wave (PMMW) imaging is an ideal technique for concealed object detection in non-contact security inspection scenarios, and has been widely used in railway stations and airports. However, there are still several challenges that limit the accuracy of detection in PMMW images: low resolution, small objects and complex background interference. The existing deep learning-based methods mainly adopt two-stage architecture with convolutional neural networks (CNN) as the backbone for feature extraction, while the low speed of two-stage architecture and limited receptive field of CNN impede the further improvement of the intelligent inspection system. In this paper, we propose a one-stage anchor-free detector that combines the merits of CNN and transformer to solve these problems, and we avoid the tradeoff between accuracy and computational complexity that most hierarchical transformers make by constricting self-attention within pre-defined local windows. Specifically, we design a novel backbone to model low-level local and high-level global features at different scales via CNN and transformer. We also introduce object queries to guide the detector to perceive the concealed objects from the background noise, and these learnable queries are further utilized to form a full-size object-aware attention mechanism. Besides, to select the optimal positive samples for the anchor-free detector, we propose a novel label assignment strategy by employing Gaussian distribution to adaptively model the objects with various shapes. Experimental results on our self-developed PMMW imager demonstrate that the proposed method outperforms the state-of-the-art methods in terms of accuracy and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Syu采纳,获得10
2秒前
3秒前
赘婿应助莫西莫西采纳,获得10
3秒前
lsls416完成签到,获得积分20
3秒前
研友_WnqdrL完成签到,获得积分10
3秒前
ppppp完成签到 ,获得积分10
4秒前
5秒前
淡定的初夏应助Ay采纳,获得20
5秒前
烟花应助ZSS_ism采纳,获得10
5秒前
xuan发布了新的文献求助20
6秒前
6秒前
阳光绿柏完成签到,获得积分10
6秒前
Tracy.完成签到,获得积分10
6秒前
6秒前
lkt发布了新的文献求助10
6秒前
7秒前
ywty发布了新的文献求助10
8秒前
务实慕青发布了新的文献求助10
9秒前
10秒前
科研通AI6应助晞晞加油干采纳,获得10
10秒前
song完成签到 ,获得积分10
10秒前
gengsumin发布了新的文献求助10
10秒前
刘莹发布了新的文献求助10
11秒前
曹苍久发布了新的文献求助10
11秒前
共享精神应助Wait采纳,获得10
11秒前
李佳慧完成签到,获得积分10
11秒前
陈杰发布了新的文献求助10
11秒前
李健应助芷兰丁香采纳,获得10
13秒前
GY完成签到,获得积分10
13秒前
林谩完成签到 ,获得积分10
14秒前
14秒前
晚风完成签到,获得积分10
15秒前
15秒前
Lyuhng+1完成签到 ,获得积分10
15秒前
zzdoc发布了新的文献求助10
16秒前
Ava应助务实慕青采纳,获得10
16秒前
16秒前
科研通AI6应助liang2508采纳,获得10
17秒前
林谩发布了新的文献求助10
17秒前
18秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381546
求助须知:如何正确求助?哪些是违规求助? 4504793
关于积分的说明 14019361
捐赠科研通 4414087
什么是DOI,文献DOI怎么找? 2424581
邀请新用户注册赠送积分活动 1417566
关于科研通互助平台的介绍 1395351