A computational framework of routine test data for the cost-effective chronic disease prediction

医学 疾病 慢性病 结直肠癌 癌症 重症监护医学 内科学
作者
Mingzhu Liu,Jianzhong Zhou,Qilemuge Xi,Yuchao Liang,Haicheng Li,Pengfei Liang,Yuting Guo,Min Liu,Temuqile Temuqile,Lei Yang,Yongchun Zuo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:13
标识
DOI:10.1093/bib/bbad054
摘要

Abstract Chronic diseases, because of insidious onset and long latent period, have become the major global disease burden. However, the current chronic disease diagnosis methods based on genetic markers or imaging analysis are challenging to promote completely due to high costs and cannot reach universality and popularization. This study analyzed massive data from routine blood and biochemical test of 32 448 patients and developed a novel framework for cost-effective chronic disease prediction with high accuracy (AUC 87.32%). Based on the best-performing XGBoost algorithm, 20 classification models were further constructed for 17 types of chronic diseases, including 9 types of cancers, 5 types of cardiovascular diseases and 3 types of mental illness. The highest accuracy of the model was 90.13% for cardia cancer, and the lowest was 76.38% for rectal cancer. The model interpretation with the SHAP algorithm showed that CREA, R-CV, GLU and NEUT% might be important indices to identify the most chronic diseases. PDW and R-CV are also discovered to be crucial indices in classifying the three types of chronic diseases (cardiovascular disease, cancer and mental illness). In addition, R-CV has a higher specificity for cancer, ALP for cardiovascular disease and GLU for mental illness. The association between chronic diseases was further revealed. At last, we build a user-friendly explainable machine-learning-based clinical decision support system (DisPioneer: http://bioinfor.imu.edu.cn/dispioneer) to assist in predicting, classifying and treating chronic diseases. This cost-effective work with simple blood tests will benefit more people and motivate clinical implementation and further investigation of chronic diseases prevention and surveillance program.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周舟完成签到 ,获得积分10
4秒前
5秒前
小喵完成签到 ,获得积分10
7秒前
大胆的忆寒完成签到 ,获得积分10
9秒前
652183758完成签到 ,获得积分10
14秒前
不如看海完成签到 ,获得积分10
14秒前
凤兮完成签到 ,获得积分10
17秒前
byron完成签到 ,获得积分10
18秒前
祁乾完成签到 ,获得积分10
20秒前
21秒前
XXXXX完成签到 ,获得积分10
24秒前
大砖华发布了新的文献求助30
25秒前
辛勤的大帅完成签到,获得积分10
29秒前
骆欣怡完成签到 ,获得积分10
34秒前
36秒前
Yang完成签到 ,获得积分10
37秒前
科研通AI5应助科研通管家采纳,获得30
40秒前
isedu完成签到,获得积分10
40秒前
逍遥呱呱完成签到 ,获得积分10
42秒前
42秒前
仙女完成签到 ,获得积分10
45秒前
50秒前
hsrlbc完成签到,获得积分10
52秒前
豆花浮元子完成签到 ,获得积分10
1分钟前
开朗的蚂蚁完成签到,获得积分10
1分钟前
清风完成签到 ,获得积分10
1分钟前
1分钟前
可爱的彩虹应助Russula_Chu采纳,获得50
1分钟前
鱼儿游完成签到 ,获得积分10
1分钟前
康谨完成签到 ,获得积分10
1分钟前
乒坛巨人完成签到 ,获得积分10
1分钟前
00完成签到 ,获得积分10
1分钟前
左丘映易完成签到,获得积分0
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
23333完成签到,获得积分10
1分钟前
开心夏旋完成签到 ,获得积分10
1分钟前
经卿完成签到 ,获得积分10
1分钟前
雪酪芋泥球完成签到 ,获得积分10
1分钟前
1分钟前
美满的皮卡丘完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804223
求助须知:如何正确求助?哪些是违规求助? 3349060
关于积分的说明 10341210
捐赠科研通 3065188
什么是DOI,文献DOI怎么找? 1682974
邀请新用户注册赠送积分活动 808571
科研通“疑难数据库(出版商)”最低求助积分说明 764600