人工智能
计算机科学
计算机视觉
规范化(社会学)
生物识别
动画
人体
可操作性
人体骨骼
身体姿势
计算机图形学(图像)
物理疗法
人类学
医学
软件工程
社会学
作者
Ran Zhao,Xinxin Dai,Pengpeng Hu,Adrian Munteanu
标识
DOI:10.1109/tii.2023.3245682
摘要
3D human models accurately represent the shape of the subjects, which is key to many human-centric industrial applications, including fashion design, body biometrics extraction, and computer animation. These tasks usually require a high-fidelity human body mesh in a canonical posture (e.g., ‘A’ pose or ‘T’ pose). Although 3D scanning technology is fast and popular for acquiring the subject's body shape, automatically normalizing the posture of scanned bodies is still under-researched. Existing methods highly rely on skeleton-driven animation technologies. However, these methods require carefully-designed skeleton and skin weights, which is time-consuming and fails when the initial posture is complicated. In this work, a novel deep learning-based approach, dubbed PoseNormNet, is proposed to automatically normalize the postures of scanned bodies. The proposed algorithm provides strong operability since it does not require any rigging priors and works well for subjects in arbitrary postures. Extensive experimental results on both synthetic and real-world datasets demonstrate that the proposed method achieves state-of-the-art performance in both objective and subjective terms.
科研通智能强力驱动
Strongly Powered by AbleSci AI